• Title/Summary/Keyword: Surface zeta potential

Search Result 260, Processing Time 0.023 seconds

An Analysis on Electrical Double Layers at the Silicon Semiconductor Interfaces Using the Zeta Potential (Zeta전위에 의한 Silicon 반도체 계면의 전기이중층 해석)

  • Chun, Jang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.242-247
    • /
    • 1987
  • Electrophysical phenomena at the silicon semiconductor-electrolyte solution interfaces were analyzed based on the zeta potential of the electrical double layer and microelectrophoresis. The suspensions were composed of the p or n-type silicon particles suspended in the KCI or pH buffer solutions. The approximate diameter of the prepared and sampled sioicon semiconductor pardticles was 1.5\ulcorner. The sign of the zeta poetntials of the p and n-type silicon particles in the KCl and pH buffer solution was positive. A range of electrophoretic mobilities of the p and n-type silicons in the KCl solutions was 5.5-8.9x10**-4 cm\ulcornerV-sec and 4.2-7.9x10**-4cm\ulcornerV-sec, respectively. The range of zeta potentials corresponding to the electrophoretic mobilities is 70.4-114.0mV nad 53.9-101.2mV, respectively. On the other hand, a range of electrophoretic mobilities of the p and n-type silicons in the pH buffer solutions was 1.1x10**-4-2.2x10**-3cm\ulcornerV-sec and 0-2.1x10**-3cm\ulcornerV-sec, respectively. The range of zeta potentials corresponding to the electrophoretic mobilities is 14.1-281.6mV and 0-268.8mV, respectively. The zeta potentials and electrical double layers of the doped silicon semiconductors are decisively influenced by the positively charged ions in the solutions. The maximum values of the zeta potentials in the KCl solutions appeared at a concentration of about 10-\ulcorner. The isoelectric point of the n-type silicon semiconductors appeared at about a pH 7. The effect of the space charge of the doped silicon semiconductors can be neglected compare with the effect of the surface charge.

  • PDF

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

Novel route of enhancing the metal loading in highly active Pt/C electro-catalyst by polyol process (Polyol process를 통한 고비율 백금 담지 촉매 합성)

  • Oh, Hyung-Suk;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A modified polyol process is developed to enhance Pt loading during the preparation of Pt/C catalysts. With the help of the zeta potential, the effect of pH on the electrostatic forces between the support and the Pt colloid is investigated. It is shown experimentally that the surface charge on the carbon support becomes more electropositive when the solution pH is changed from alkaline to acidic. However, this change does not affect the electronegative surface charge of Pt colloids already attained and stabilized by glycolate anions. This new behavior caused by the change in the solution pH accounts for the enhanced yield of the process and does not affect the Pt particle size. All our experimental results reveal that this simple modification is a cost effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells.

  • PDF

A Study on the Surface Properties of Wool Fabric Treated with Enzyme (효소가공 양모직물의 표면 성질에 관한 연구)

  • 박미라;김환철;박병기
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.227-233
    • /
    • 2001
  • Wool fabrics were pre-treated with corona prior to treating with enzyme for shrinkage resistance. Commercial protease and cellulase were used for degradation of wool and the treatment conditions such as enzyme amount, treating time, and assistant chemicals. Friction coefficient and zeta-potential were measured to certificate an effect of treatment condition on the handle of wool fabric. Corona pretreatment make the wool fabric soft, which result in the decrease of friction coefficient and zeta-potential. Scale removal of wool surface was observed by scanning electron microscope. Amino acid analysis shows the effectiveness of enzyme, and corona pretreatment does not cause severe internal damage.

  • PDF

Surface Treatment and Dyeability of Poly(phenylene sulfide) Films by UV/O3 Irradiation (UV/Ozone 조사에 의한 Poly(phenylene sulfide) 필름의 표면처리와 염색성)

  • Jang, Yong-Joon;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • Poly(phenylene sulfide)(PPS) films were photooxidized under UV/ozone irradiation. The effect of UV energy on the surface properties of the UV-irradiation PPS films were investigated by the measurement of reflectance, surface roughness, and contact angle. Reflectance decreased at the wavelength of 400nm and the surface roughness increased with increased UV energy. The improvement in hydrophilicity with increased $O_{1s}/C_{1s}$ was caused by the introduction of hydrophilic $SO_2$ bond. Surface energy increased from 46.6 to $78.3mJ/m^2$ with increased UV energy up to $21.2J/cm^2$. Also zeta potential decreased with increased UV energy. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.he photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.

Coagulation of Cationic Rosin Emulsion and its Effect on Ink Receptivity of Coating Layer (양이온성 로진 에멀션의 응결현상이 도공층의 잉크흡수성에 미치는 영향)

  • 박철웅;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.74-83
    • /
    • 1998
  • The phenomenon of decrease in sizing efficiency when the stock temperature is increased is well recognized as summer sizing, and this is believed to be caused by uneven distribution of sizing agents on paper surface most often incurred by coagulation of sizing agents. When unevenly sized paper is used as coating base stock, nonuniform consolidation of the coating layer may result, which, in turn, causes uneven distribution of binder on coating surface. This causes nonuniform ink absorption to produce print mottle. In this study the effects of simple or polymeric electrolytes, storage temperature and time on the coagulation of cationic dispersed rosin size were investigated using a turbidity measurement method which was verified to correlate well with the particle size of rosin emulsion or its coagulates. Handsheets sized with rosin dispersions coagulated under various conditions were prepared and their sizing degree and coated paper properties including gloss and ink density were examined. The relationship between the sizing nonuniformity of coated papers and its ink absorption property was evaluated. Turbidity of rosin emulsion increased as the storage temperature and time were increased. Addition of simple or polymeric electrolytes caused reduction in $zeta$ -potential of the rosin dispersion and accelerated the coagulation tendency substantially. Reversion of the $zeta$ -potential of rosin dispersion, however, did not occur when coagulation was induced with simple electrolytes. On the other hand, addition of an anionic polyelectrolyte reversed the $zeta$ -potential of the flocculated rosin dispersion. This indicated that electrical double layer compaction and bridging flocculation were coagulation mechanisms for simple and polymeric electrolytes, respectively. Sizing degree decreased as coagulation of rosin was increased. Paper gloss, ink gloss and ink density were increased when sizing degree of base stock was increased most probably due to prevention of base paper swelling and increased binder migration to coating surface. This suggested that uneven printing ink density occurred when uneven sizing development was induced by coagulation of rosin particles.

  • PDF

Improving the Viability of Freeze-dried Probiotics Using a Lysine-based Rehydration Mixture

  • Arellano, Karina;Park, Haryung;Kim, Bobae;Yeo, Subin;Jo, Hyunjoo;Kim, Jin-Hak;Ji, Yosep;Holzapfel, Wilhelm H.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • The probiotic market is constantly continuing to grow, concomitantly with a widening in the range and diversity of probiotic products. Probiotics are defined as live microorganisms that provide a benefit to the host when consumed at a proper dose; the viability of a probiotic is therefore of crucial importance for its efficacy. Many products undergo lyophilization for maintaining their shelf-life. Unfortunately, this procedure may damage the integrity of the cells due to stress conditions during both the freezing and (vacuum-) drying process, thereby impacting their functionality. We propose a lysine-based mixture for rehydration of freeze-dried probiotics for improving their viability during in vitro simulated gastric and duodenum stress conditions. Measurement of the zeta potential served as an indicator of cell integrity and efficacy of this mixture, while functionality was estimated by adhesion to a human enterocyte-like Caco-2 cell-line. The freeze-dried bacteria exhibited a significantly different zeta potential compared to fresh cultures; however, this condition could be restored by rehydration with the lysine mixture. Recovery of the surface charge was found to influence adhesion ability to the Caco-2 cell-line. The optimum lysine concentration of the formulation, designated "Zeta-bio", was found to be 0.03 M for improving the viability of Lactiplantibacillus plantarum Lp-115 by up to 13.86% and a 7-strain mixture (400B) to 41.99% compared to the control rehydrated with distilled water. In addition, the lysine Zeta-bio formulation notably increased the adherence ability of lyophilized Lp-115 to the Caco-2 cell-line after subjected to the in vitro stress conditions of the simulated gastrointestinal tract passage.

A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(I) (무전해 Ni 복합도금 과정에서 분발의 공석 기구에 대한 연구(I))

  • 이원해;이승평
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 1989
  • Codeposion of inert particles particles in a metallic mateix by electroless plating process involves two phenomena. Firstly, the adsorption of inercles and secondly, the adsorption of inert particles on the cathode. In the present paper the first adsorption phenomenon and in the next paper the second ane are studied in greaterdetail for the Ni-SiCc, Ni-Al2AO3 and Ni-WC systems. Measurements of the Zeta potentials for the SiC and Al2AO3 particles have been in different electrolyte solutions and the ionic species adsorbed on the Particles studied. The addition of sodium acetate, trisodium citrate and sodium phosphinate to nikel sulface sruomotes the zeta potential of SiC and Al2O3 particles, but zeta phosphinate to nickel is more positive than Al2O3 particles although the amount of nickel ion adsorbrd on the Al2O3 particles become greater than that of SiC particles. It is suggested that this is due to adsortion of Na ion onto the surface SiC particles.

  • PDF

Studies on the surface charge and coagulation characteristics of suspended particles in the aqueous phase (수용액상에서 부유 미립자의 표면전위와 응집특성에 관한 연구)

  • 박상원;김성국;홍대일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • This study aimed to elucidate the relationship between theoretical parameters affecting the coagulation process and the real coagulation phenomenon applied to the dye wastewater. Emphasis was placed on the effective removal of the suspend particulates. Parameters studied in this study are pH, coagulant concentration and surface potential. Optimal dosages of coagulants by the measurement of the zeta potential at lower then $25^{\circ}C$ are 5\times$10^P-3}$ M of $FeCl_3 and 1.4\times10^{-6}M of Fe_2(SO_4)_3$. The results were well agreeded with the separate Jar-test results. Emphasis was also placed on the relationship between water quality and the content of SS. It was found that the COD and DOC were reduced to 65% and 85%, respectively. The turbidity at the above condition was reduced from 300 NTU to 0~1 NTU. Efforts were made to clarify the behavior of the suspend solid as affecting the water quality. 12,000~13,000 particles/10mL in $1~50\mu$m size range particulates in the raw wastewater were reduced to 300 particle/10mL in the same range after treatment. This research has proposed the methodology to find out the optimal condition of coagulation for small scale wastewater treatment plant or chemical coagulation process.

  • PDF

Reuse of Oyster Shell Waste as Antimicrobial Water Treatment Agent by Silver Ion Exchange

  • Jo, Myung-Chan;Byeong-II Noh;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2000
  • A water treatment agent with antimicrobial activity(Ag-Os) was created by exchanging silver ion($Ag^{+}$) on calcined oyster shell powder. The desorption of the exchanged silver ion was negligible, thereby indicating a stable antimicrobial water treatment agent. The sterilization effect of Ag-Os on underwater microorganisms was then investigated. An MIC (Minimum Inhibitory Concentration) test result indicated that Ag-Os had an excellent sterilization effect on G-germs, such as Escherichia coli and Pseudomonas aeruginosa. Most germs were annihilated with an Ag-Os concentration of 200 ppm and contact time of 60 minutes. The sterilization effect was mainly dependent on the contact time. The zeta potential of the Ag-Os powder adsorbed on sand was measured relative to the concentration of exchanged silver ion. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the Ag-Os powder adsorbed on sand also increased. Accordingly, this result indicated that a higher silver ion than ion exchange capacity was present on the particle surface due to adsorption. Consequently, this increased concentration of exchanged silver ion would appear to significantly enhance the sterilization power.

  • PDF