• Title/Summary/Keyword: Surface wind assessment

Search Result 72, Processing Time 0.026 seconds

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.

Sudden rise of fine particle concentration after Typhoon USAGI and NARI passage in Busan (태풍 우사기와 나리 통과 후 부산지역 미세먼지 농도의 급상승에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.557-564
    • /
    • 2011
  • This study was conducted to investigate the sudden rise of fine particle concentration after the passage of typhoon USAGI and NARI in Busan. Nocturnal inversion layer was formed at atmospheric boundary layer and wind direction changed from southerly wind to northeasterly wind after USAGI passed through Busan. Fine particle concentration in Busan rapidly increased by subsidence of air pollutants released from sources and dust transported from in the vicinity of industrial regions. Wind direction changed from northeasterly wind to southeasterly wind, wind velocity increased and lower atmosphere became extremely unstable after NARI passed through Busan. $PM_{10}$ concentration of Busan increased sharply because of surface dust dispersed by strong wind. Fine particle concentration generally decreases by precipitation and wind after typhoon passes through. However, the concentration can also go up not only by subsidence and transportation in nocturnal inversion layer but also by surface dust which temporarily occurs by strong wind.

Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model (CFD 모델을 이용한 도시지역 지상바람 관측환경 평가)

  • Yang, Ho-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.449-459
    • /
    • 2015
  • Effects of buildings and topography on observation environment of surface wind in central regions of urban areas are investigated using a computational fluid dynamics (CFD) model. In order to reflect the characteristics of buildings and topography in urban areas, geographic information system (GIS) data are used to construct surface boundary input data. For each observation station, 16 cases with different inflow directions are considered to evaluate effects of buildings and topography on wind speed and direction around the observation station. The results show that flow patterns are very complicated due to the buildings and topography. The simulated wind speed and direction at the location of each observation station are compared with those of inflow. As a whole, wind speed at observation stations decreases due to the drag effect of buildings. The decrease rate of wind speed is strongly related with total volume of buildings which are located in the upwind direction. It is concluded that the CFD model is a very useful tool to evaluate location of observation station suitability. And it is expected to help produce wind observation data that represent local scale excluding the effects of buildings and topography in urban areas.

A Study on Development and Utilization of Wind Hazard Maps (강풍위해지도 개발 및 활용 방안에 관한 연구)

  • Lee, Young-Kyu;Lee, Sung-Su;Ham, Hee-Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, a wind hazard map over Korea peninsula based on geographical information is developed, which consists of the surface roughness model, the topographical effect model and the homogeneous wind model. The surface roughness model is assessed to evaluate the effect of the surface roughness on the wind field near ground. The topographical effect model is assessed to quantify the effect of the speed-up caused by topology, which is calculated by adopting the topographical effect factor in Korea building code (2005). The homogeneous wind map is created either by a frequency analysis method for meteorological data or a typhoon simulation. The results show that the wind hazard map can be applied to the determination of insurance premium as well as the assessment of loss and damage.

Numerical Simulations of the local circulation in coastal area using Four-Dimensional Data Assimilation Technique (4차원 자료동화 기법을 이용한 해안가 대기 순환의 수치 실험)

  • Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.79-91
    • /
    • 2002
  • Four dimensional data assimilation (FDDA) technique was considered for 3 dimensional wind field in coastal area and a set of 3 numerical experiments including control experiments has been tested for the case of the synoptic weather pattern of the weak northerly geostrophic wind with the cloud amount of less than 5/10 in autumn. A three dimensional land and sea breeze model with the sea surface temperature (SST) of 290K was performed without nudging the observed wind field and surface temperature of AWS (Automatic Weather System) for the control experiment. The results of the control experiment showed that the horizontal temperature gradient across the coastline was weakly simulated so that the strength of the sea breeze in the model was much weaker than that of observed one. The experiment with only observed horizontal wind field showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated. However, the horizontal wind speed and vertical motion in the convergence zone were weakly simulated. The experiment with nudgings of both the surface temperature and wind speed showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated even though the ending time of the sea breeze was delayed due to oversimulated temperature gradient along the shoreline.

Improvements in the simulation of sea surface wind over the complex coastal area- I : Assessment of current operational model (복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가)

  • Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.657-667
    • /
    • 2005
  • In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.

An Analysis of Local Wind Field based on Urban Development (도시개발에 따른 국지 바람장 분석)

  • Song, Dong Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • A numerical study with Envi-met model is experimented to investigate the characteristics of wind pattern in Gangwon innovation city. In all case, most conditions such as wind speed, temperature, and surface are considered as the same, but wind direction is the only different factor. The wind directions considered in this study have a meaning of prevailing wind direction. When the prevailing wind with the direction of $247^{\circ}$ blows into the city, the ventilation passage toward the outside of city is formed and the stagnation of air is not expressed. In case of having the direction of $270^{\circ}$, most evident ventilation passages are composed. When the inflow wind direction is the north, $0^{\circ}$, there is some possibility of stagnation phenomenon. The case where the representative wind direction of three kind will flow with development, in compliance with the building is caused by with screening effect of some and shows a true stagnation phenomenon, wishes in the park and flowing water and the greens area to be for a long time formed and the wind direction is maintained.

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Assessment of casting parts fatigue life for 3MW offshore wind turbine (3MW 해상풍력발전기 주물품의 내구수명 평가)

  • Roh, Gitae;Kang, Wonhyoung;Lee, Seongchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

Effects of aspect ratio on laboratory simulation of tornado-like vortices

  • Tang, Zhuo;Zuo, Delong;James, Darryl;Eguch, Yuzuru;Hattori, Yasuo
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Experiments were conducted in a large-scale Ward-type tornado simulator to study tornado-like vortices. Both flow velocities and the pressures at the surface beneath the vortices were measured. An interpretation of these measurements enabled an assessment of the mean flow field as well as the mean and fluctuating characteristics of the surface pressure deficit, which is a manifestation of the flow fluctuation aloft. An emphasis was placed on the effect of the aspect ratio of the tornado simulator on the characteristics of the simulated flow and the corresponding surface pressure deficit, especially the evolution of these characteristics due to the transition of the flow from a single-celled vortex to a two-celled vortex with increasing swirl ratio.