• Title/Summary/Keyword: Surface wear

Search Result 1,993, Processing Time 0.027 seconds

An enhancement in wear property of UHMWPE used in joint prosthesis (인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구)

  • Kim, K.T.;Lee, C.W.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF

Tool Wear and Cutting Characteristics in the Machining of Die Material using Ceramic Toll (세라믹 공구를 이용한 금형강 가공시 공구마멸과 절삭특성)

  • 손창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.114-118
    • /
    • 1996
  • Evaluation of cutting condition is one of the most important aspect to improve productivity and quality. In this study, the wear and cutting characteristics(cutting force, acoustic emission signal and surface roughness) of ceramic cutting tool for hardened die material(SKD11) were investigated by experiment. Flank wear on relief face of tool was occurred more dominant than crater wear on rake face. Experiments were performed under the various cutting condition.

  • PDF

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

Characteristics of Hardness and Wear-Resistance of Plasma-Nitrided and Nitrocarburized Carbon Steels (플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성)

  • Kim, M.K.;Jung, B.H.;Park, H.S.;Lee, B.C.;Shin, S.H.;Lee, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.166-173
    • /
    • 1999
  • Commercial carbon steels containing 0.2~0.55 wt.----C were plasma-nitrided or plasma nitrocarburized at $550^{\circ}C$ for 21.6Ks using $H_2-N_2$ or $H_2-N_2$-CO mixed gas respectively. The characteristics of hardening and wear-resistance of each treatment were studied and compared. And also microstructure of nitrided layer and nitrides formed in compound layer near surface were studied. All plasma-nitrided steels investigated showed remarkable increase of surface hardness with the increase of carbon content. But nitrocarburized steels resulted in higher surface-hardness than plasma-nitrided steels, which means that nitrocarburized has higher surface-hardening effect. Plasma-nitrided steels showed hardness increase in through-thickness direction near surface. And also nitrocarburized steels showed similar hardness distribution in through-thickness direction to that of plasma-nitrided steel. However, nitrocarburized steels had higher cross-sectional maximum-hardness than plasma-nitrided steels as much as 100Hv. Wear test showed that the amount of specific wear was reduced by both plasma-nitriding and nitrocarburized, showing that the amount of specific wear was not related to the hardness. But non-treated specimen showed that the amount of specific wear was related to the hardness.

  • PDF

Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor (여러 미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성)

  • Lee, Young-Ze;Oh, Se-Doo;Kim, Jong-Woo;Kim, Cheol-Woo;Choi, Jin-Kyu;Cho, Sung-Ook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.221-226
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in role amounts of friction and wear between miler and vane surfaces.

  • PDF

Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor (미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성)

  • Oh Se-Doo;Cho Sung-Oug;Lee Young-Ze
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.337-342
    • /
    • 2004
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test, friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amounts of friction and wear between roller and vane surfaces.

Tribological behaviors of polymer coated carbon composite with small surface grooves (코팅된 요철표면을 가지는 탄소/에폭시 복합재료의 마찰 및 마모 특성)

  • Kim, Seong-Su;Lee, Hak-Gu;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.107-110
    • /
    • 2005
  • Tribological behaviors of carbon epoxy composites whose surfaces have many small grooves were compared with respect to coating method under dry sliding and water lubricating conditions. The surface coating materials were epoxy (Ep) and polyethylene (PE) mixed with self-lubricating $MoS_2$ and PTFE powders. The wear morphology of the composites observed with a scanning electron microscopic (SEM) revealed that the surface coating layer mixed with the self-lubricating powder on the grooved surface significantly improved the wear resistance under water lubricating condition because the surface coating layer blocked water to penetrate the composite surface and the self-lubricating powder reduced the wear on the coating by suppressing the generation of blisters.

  • PDF

Effects of Plasma Nitriding on the Surface Characteristics of Tool Steels (공구강의 표면특성에 미치는 플라즈마 질화처리의 영향)

  • 이호종;최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2003
  • Effects of plasma nitriding on the surface characteristics of tool steels have been investigated using wear tester, micro-hardness tester and scanning electron microscope (SEM) Commercial SKD 11 and SM45 alloy were used as specimens and were plasma nitrided using a plasma nitriding equipment for 5 hr and 10hr at $500^{\circ}C$. Microstructure and phase analysis were performed using SEM and XRD. It was found that plasma nitriding for lour at $500^{\circ}C$, compared with plasma nitriding for 10hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear resistance and hardness as nitriding time increased. SKD11 alloy showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with SM45 alloy.

EFFECT OF SURFACE ROUGHNESS OF MATING SURFACE AND TRANSFER LAYER ON FRICTION BETWEEN a-CNx AND $Si_3N_4$ IN NITROGEN

  • Umehara, N.;Tokoroyama, T.;Tomita, H.;Takenoshita, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.155-156
    • /
    • 2002
  • During the sliding between a-CNx and $Si_3N_4$, applying nitrogen as environmental gas provided very low friction as the level of 0.01 in friction coefficient. In order to know the effect of the running-in process on the reduction of the friction, the effect of surface roughness of mating surface on friction was investigated. It was shown that smooth surface in wear scar of ball provided low friction coefficient. Friction coefficient after running-in was proportional to the Ry value of wear scar of ball. Also smooth thin transferred layer was observed on the wear scar of balls with an AFM after sliding test. Those results showed the smoothing of wear scar of ball, the generating of the transferred layer from CNx was necessary for low friction.

  • PDF

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.