• Title/Summary/Keyword: Surface wave investigation

Search Result 135, Processing Time 0.029 seconds

Numerical investigation of floating breakwater movement using SPH method

  • Najafi-Jilani, A.;Rezaie-Mazyak, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.122-125
    • /
    • 2011
  • In this work, the movement pattern of a floating breakwater is numerically analyzed using Smoothed Particle Hydrodynamic (SPH) method as a Lagrangian scheme. At the seaside, the regular incident waves with varying height and period were considered as the dynamic free surface boundary conditions. The smooth and impermeable beach slope was defined as the bottom boundary condition. The effects of various boundary conditions such as incident wave characteristics, beach slope, and water depth on the movement of the floating body were studied. The numerical results are in good agreement with the available experimental data in the literature The results of the movement of the floating body were used to determine the transmitted wave height at the corresponding boundary conditions.

Establishment and Verification of SPT-uphole method for Evaluating Shearwave Velocity of a site (지반의 전단파 속도 도출을 위한 SPT 업홀 기법의 확립 및 검증)

  • Bang, Eun-Seok;Kim, Jung-Ho;Seo, Won-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.142-152
    • /
    • 2008
  • SPT-Uphole method was introduced for the evaluation of near subsurface shear wave velocity (Vs) profile. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. 1D shearwave velocity profile can be obtained in the manner of downhole method, Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole method was performed and the feasibility of proposed method was verified in the field.

  • PDF

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes (탄소성 금속관 내 가스 폭굉의 수치적 연구)

  • Gwak, Min-cheol;Do, Yeong-dea;Park, Jeong-su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

A Study on the Vibration Isolation Effect of Wave Barrier in Frozen Soils (동결지반 내 방진벽의 차진성능에 관한 연구)

  • Heo, Yeong
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.362-367
    • /
    • 2001
  • The stiff top layer in a soil profile, which can happen in winter, may change the isolation effect of the wave barrier. The research scope of this paper is the investigation of the propagation of surface waves in layered soil with a stiff layer on its top, and the isolation effect of the solid stiff wave barrier. The investigations have been performed numerically by the Boundary-Element Method as a two-dimensional problem. A strip foundation vibrated harmonically in vertical direction was considered as the vibration source. Three soil profiles, a homogeneous half-space, two profiles with different thickness of stiff top layer, with two different types of wave barriers were investigated. The profiles with a stiff top layer show considerable reductions of the amplitude of the vibration in comparison to the homogeneous soil profile. The layered soil profiles with a stiff top layer do not show wave propagation velocities as high as they are expected from the material properties. Furthermore the vibration amplitudes in a frozen soil are much smaller with distance than in a non-frozen soil.

  • PDF

An Experimental Investigation on Reduction of List Angle of a Semi-submersible Platform in Head Sea

  • Kim, Nam Woo;Nam, Bo Woo;Choi, Young Myung;Hong, Sa Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.168-175
    • /
    • 2015
  • This study consists of an experimental investigation of the reduction of the second-order roll motion of a semi-submersible platform in head sea conditions by adding hull damping. The second-order heave drift force and roll drift moment are known to be the main triggers that induce the list angle (Hong et al., 2010). Hong et al. (2013) used numerical calculations to show the possibility of reducing the list angle by changing the pontoon shape and adding a damping device on the hull. One of their findings was that the reduction in the list angle due to the increase in pontoon surface damping was significant. A series of model tests were carried out with a 1:50 scaled model of semi-submersible at the KRISO wave basin. The experiments indicated that adding damping on the hull surface effectively suppressed the list angle.

Case Study on Estimation of Shear Wave Velocity in Core Zone of Rockfill Dam Using MASW (MASW를 이용한 사력댐 코어죤 전단파속도 산정 사례 연구)

  • Lee, Jongwook;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.53-60
    • /
    • 2008
  • The purpose of this study is to make case studies on estimation of shear wave velocity in core zone of some rockfill dams by MASW (Multi-channel Analysis of Surface Waves) and to compare the results of case studies with those of the empirical method. Furthermore, the purpose is to recommend the range of shear wave velocity in core zone by MASW and to supply the preliminary data for estimation of shear wave velocity in core zone which is needed for dynamic analysis. From the results of case studies and the comparison between the results of case studies and those of empirical equation, it was found that the shear wave velocities obtained by MASW were smaller than those by the empirical recommendation (Sawada & Takahashi) in the depth of more than 10 m. Also, it is recommended that using the lower bound of empirical formulation by Sawada and Takahashi be available and resonable in case that MASW is not available due to the field condition and the investigation is preliminary.

  • PDF

Investigation of Transmission Process for Ultrasonic Wave in Wood (목재 내 초음파 전달 경로 구명)

  • Lee, Jun-Jae;Kim, Gwang-Mo;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Among the nondestructive evaluation (NDE) methods for wood defect detection, ultrasonic wave has been considered as competitive technique in terms of economics and workability. Until now, researches on application of NDE methods for wood have focused mainly on standing tree and logs. Recently, some attempts have been conducted with NDE technique, for evaluation of wooden structural members. However, wooden structural members are different from others (standing tree or log) in various aspects. Expecially when some parts or whole member are covered with other materials, they can't be evaluated appropriately on general NDE methods. For the purpose of development of proper NDE technique for the wooden structural members, the ultrasonic wave transmission process investigated on artificial defect in wood. First, various types of transmission process were assumed, and then the transmission times were predicted respectively. Predicted times were compared with the measured time of ultrasonic wave and then a suitable type of transmission process is determined. In case of the ultrasonic wave doesn't transmit directly due to defect, it is reflected once only at the opposite surface of member, and the path is accord with the line of shortest length.

NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUPERSONIC JET AND PERPENDICULAR PLATE

  • Yasunobu T;Matsuoka T;Kashimura H;Setoguchi T
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • The numerical investigation of the interaction between the underexpanded supersonic jet and the perpendicular plate is carried out using the TVD numerical method. The wave structure in the flowfield and the pressure and temperature distributions on the plate surface are obtained by the numerical analysis. Especially, the influence of self-induced flow oscillation caused by the impinging jet and the characteristic of impinging jet are shown. From the result of the numerical analysis, it is concluded that the pressure and the temperature fluctuations on the plate surface strongly depends on the pressure ratio in the flowfield and the position of plate.

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.