• 제목/요약/키워드: Surface treatment of Iron

검색결과 219건 처리시간 0.027초

내부경화형 구상흑연주철 롤의 미세조직과 경도에 미치는 열처리의 영향 (Effect of Heat Treatment on the Microstructure and Hardness of Internally Hardened Ductile Cast Iron Roll)

  • 이상묵;김도훈;윤서현
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This study was investigated the effect of heat treatment on the microstructure and hardness of internally hardened ductile cast iron roll. The following conclusions were obtained. Some of the graphite was decreased and a bainite was produced by heat treatment. It decreased due to the decomposition of some of the cementite precipitated in the as-cast by heat treatment, but there was no significant change when it reached a certain depth. Hardness increased due to formation of bainite by heat treatment. On the surface, the hardness decreased due to the decrease in the amount of transformation of cementite into bainite, but there was no change beyond a certain depth.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • 제5권1호
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

초급속열처리 구상흑연주철 FCD500의 피로파괴특성 (Fatigue Fracture Behavior of Spheroidal Graphite Cast Iron FCD500 by Super-Rapid induction Quenching)

  • 지정근;김민건;김진학;김정두
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.596-601
    • /
    • 2002
  • Rotary bending fatigue tests were carried out to investigate the fatigue characteristics of high performance ductile cast iron experienced super rapid induction treatment. The influence of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by improved structure in the surface. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress and the crack propagation behavior has zigzag pattern in the hardened surface layer.

전통 연침법(鍊鍼法)의 재현 및 침(鍼) 표면 변화의 분석 (Reproduction of Traditionally-Refining Acupuncture Needle and Analysis of Surface-chemical Properties)

  • 이승택;유정웅;김익진;차웅석
    • 한국의사학회지
    • /
    • 제26권2호
    • /
    • pp.135-148
    • /
    • 2013
  • This study analyzed surface-chemical transitions in manufacturing process of traditional acupuncture as proposed method by Dongeuibogam. The manufacturing process of traditional acupuncture from a used iron for a long time was divided by primary medicinal herbs treatment, secondary medicinal herbs treatment and tertiary treatment using by dog meat. The traditional acupuncture research process was measured according to the characteristics and changes of the specimens at each processing step of the manufacturing process. The following devices were used to Surface analysis. Scanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS), X-ray diffraction analyzer (XRD). As a result, medicinal herbs removed impurities on the surface and raised the antibacterial effect in the manufacturing process of traditional acupuncture. Furthermore, the ingredients of medicinal herbs were coated on the surface of the iron. Dog meat influenced to prevent surface corrosion, reduce friction when the acupuncture was inserted. Although the process empirically obtained, a glimpse of the wisdom of our ancestors was revealed. These ancestral wisdom can be expected to apply today, when used in manufacturing process of a modern stainless steel acupuncture to compensate for the defective part.

High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리 (Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser)

  • 황현태;송현수;김종도;송무근;김영국
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.

오스템퍼링처리한 구상흑연주철에서 인공결함에 대한 피로한도 민감도에 관한 연구 (A Study on the Artificial Defect Sensitivity of Fatigue Limit in Austempered Ductile Iron)

  • 김민건;김진학
    • 열처리공학회지
    • /
    • 제12권3호
    • /
    • pp.215-220
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the artificial defect sensitivity of fatigue limit in annealed and austempered ductile irons. Artificial defect(hole, diameter${\leq}0.4mm$) machined on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iron as compared with annealed. As a result of investigation on $\sqrt{area}$ c which is the critical artificial defect size. $\sqrt{area}$ c of austempered ductile iron is larger than that of annealed. This means that the crack initiation at artificial defect in austempered ductile iron is more difficult in comparison with annealed. In case that the $\sqrt{area}$ c of artificial defect and graphite nodule are same, the rate of crack initiation for graphite nodule is higher than that of artificial defect.

  • PDF

영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향 (Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap)

  • 홍성제;홍상혁;조아진;김용성;김병준;양수원;이재용
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.110-116
    • /
    • 2022
  • 본 연구에서는 NdFeB 영구자석 스크랩으로부터 회수한 철(Fe) 부산물을 이용하여 산화철(FeOx) 나노입자를 합성하였고, 열처리 온도가 FeOx 나노입자의 물성에 미치는 영향을 관찰하였다. 이를 위해 D.I. water에 약 10 wt%로 희석한 철 부산물 용액에 2.0 M 암모니아(NH4OH) 용액을 투여하여 산화철 전구체를 석출하였고, 이를 300 ℃, 400 ℃, 500 ℃ 및 600 ℃로 각각 열처리하여 FeOx 나노 입자를 합성, 열처리 온도에 따른 FeOx 나노 입자의 물성을 관찰하였다. X-ray diffraction (XRD) 분석 결과 열처리 온도가 증가할수록 <104> 회절 피크가 성장하여 500 ℃ 이상에서 α-Fe2O3 결정구조와 일치하는 회절 피크가 검출되었다. BET (Brunauer-Emmett-Teller) 비표면적 분석 결과 400 ℃ 이상에서 열처리 온도가 증가할수록 비표면적이 감소하는 경향을 나타내었다. HRTEM (high resolution transmission electron microscope) 관찰 결과 rod 형 나노입자가 관찰되었고, 열처리 온도 증가에 따라 나노입자의 크기가 증가하는 경향을 나타내었다.

STS 304, 316강의 열처리에 따른 산화거동 (An Oxidation Behavior with Heat-treatment in STS 304 and 316)

  • 이경구;윤동주;기회봉;강창석;이도재
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.186-191
    • /
    • 1998
  • An oxidation behavior of 304 and 316 stainless steels were studied in dry air. After solution treatment, specimens were polished up to $1{\mu}m$ $A1_2O_3$ grade and then subjected to oxidation treatment in dry air at $800^{\circ}C{\sim}1200^{\circ}C$. The oxidation behavior between matrix and oxide scale was analyzed with SEM, EDS and XRD. When oxidation treatment was conducted at $1200^{\circ}C$, large thickness of Fe oxide scale was formed on top of surface and fine $(Cr,Fe)_2O_3$ oxide film was formed below it. Cr rich zone existed at interface between metal and $(Cr,Fe)_2O_3$ oxide layer, and it was believed that this zone acted as obstacle to oxidation. Most of Ni was detected at the interface between metal and $(Cr,Fe)_2O_3$ and also detected at the interface between $Fe_2O_3$ and $(Cr,Fe)_2O_3$.

  • PDF

전기아연도금강판의 열확산 거동 (Thermal diffusion behaviors of electrogalvanized steel sheets)

  • 김영근
    • 한국표면공학회지
    • /
    • 제28권5호
    • /
    • pp.320-328
    • /
    • 1995
  • The electroplated steel sheets were heated during the short periods(10~60 seconds) at high temperature ($360^{\circ}C$$500^{\circ}C$) in order to investigate thermal diffusion behaviors. When the steel sheets were heated for 10 seconds, all the coated layers were alloyed at $420^{\circ}C$ but at temperature lower than $400^{\circ}C$ the $\eta$ phase partially remained on the coated surface. At higher temperature, the longer the time for heat treatment the iron contents were increased in coated layer but the glossiness and whiteness of the coated surface were decreased. While the alloying phases of $\eta$, $\zeta$, $\delta_1$ and $\Gamma$ were appeared in the coated layer at the heat treatment temperature of $360^{\circ}C$, the phase was disappeared at $420^{\circ}C$ but the rests grew in size at the temperature of $440^{\circ}C$. When the heat treatment temperature and heating time were increased, the thickness of $\Gamma$ phase was rapidly increased to 0.8 $\mu\textrm{m}$. The optimum conditions for the heat treatment to prevent powdering of coated layer were obtained to heat it for 30 seconds at $400^{\circ}C$ and 10 seconds at $440^{\circ}C$, and the iron content in coated layer was suited to be 10 percents.

  • PDF

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.