• 제목/요약/키워드: Surface strength

검색결과 6,066건 처리시간 0.033초

침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구 (A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears)

  • 류성기;전형주;문봉호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.959-963
    • /
    • 1996
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending fatigue strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs compared to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구 (A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears)

  • 류성기;전형주;문봉호
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.61-67
    • /
    • 1997
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs comparaed to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

알카리 표면개질 처리가 무전해 구리 도금피막과 폴리이미드 필름의 접합력에 미치는 효과 (Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films)

  • 손이슬;이호년;이홍기
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.8-14
    • /
    • 2012
  • The effects of the alkali surface modification process on the adhesion strength between electroless-plated Cu and polyimide films were investigated. The polyimide surfaces were effectively modified by alkali surface treatments from the hydrophobic to the hydrophilic states, and it was confirmed by the results of the contact angle measurement. The surface roughness increased by alkali surface treatments and the adhesion strength was proportional to the surface roughness. The adhesion strength of Cu/polyimide interface treated by KOH + EDA (Ethylenediamine) was 874 gf/cm which is better than that treated by KOH and KOH + $KMnO_4$. The results of XPS spectra revealed that the alkali treatment formed oxygen functional groups such as carboxyl and amide groups on the polyimide films which is closely related to the interfacial bonding mechanism between electroless-plated Cu and polyimide films. It could be suggested that the species and contents of functional group on polyimide films, surface roughness and contact angle were related with the adhesion strength of Cu/polyimide in combination.

상아질 표면 처리 방법에 따른 Compomer의 전단 결합 강도 (SHEAR BOND STRENGTH OF COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT)

  • 오영학;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제26권2호
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this study was to evaluate the shear bond strength of compomers according to dentin surface treatment. Two materials of compomer were devided into six groups. The compomer used in this study were Dyract AP(D) and F2000(F), Group 1 (DN) and 4(FN) were treated according to manufacturers instructions as control groups. Group 2(DE) and 5(FE) were treated with 37% phosphoric acid and group 3(DA) and 6(FA) were treated with air abrasion unit (80 psi, 50 m aluminum oxide particles) respectively as experimental groups. After dentin surface treatment, compomers were bonded. Completed samples were stored in 100% humidity. 37C during 7 days, and then, the shear bond strength of specimens were evaluated. The results were as follows: 1. In the case of Dyract AP, the shear bond strength was showed the highest value of 9.10 MPa in dentin surface treatment with air abrasion unit. but there were no significant differences to the other groups. 2. In the case of F2000. the shear bond strength was showed the highest value of 13.51MPa and there were significant differences to the other groups(p<0.05). 3. The shear bond strength of F2000 was higher than Dyract AP in each dentin surface treatment. and in the case of etching and air abrasion. there were significant differences(p<0.05). 4. As a result of observation of SEM. the most of fracture pattern was adhesive failure in group 1(DN), 2(DE) and 4(FN), and cohesive failure in group 3(DA), S(FE) and 6(FA).

  • PDF

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

기계적/전기화학적 표면처리가 알루미늄-에폭시의 접합강도 향상에 미치는 영향 (Effect of Mechanical and Electrochemical Surface Treatments on Aluminium-Epoxy Adhesive Strength)

  • 정원섭;김도형
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.549-554
    • /
    • 2016
  • Low melting metals are difficult to weld because it is vaporized. But epoxy resin make bonding possible using low melting material and dismissal materials. This study is to improve the bonding strength of epoxy and substrate by mechanical and electrochemical methods. In case of mechanical work, bonding strength is 17.6MPa and in case of pre-work, bonding strength is 15.3MPa. When anodizing and mechanical work is applied, bonding strength is 25.3Mpa is increased 165%. When anodizing is applied, bonding strength is 27.6Mpa.

다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구 (Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film)

  • 김도현;배성우;조정민;유민숙;김동수
    • 한국정밀공학회지
    • /
    • 제33권3호
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.

Repair bond strengths of non-aged and aged resin nanoceramics

  • Subasi, Meryem Gulce;Alp, Gulce
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.364-370
    • /
    • 2017
  • PURPOSE. To explore the influence of different surface conditionings on surface changes and the influence of surface treatments and aging on the bond strengths of composites to non-aged and aged resin nanoceramics. MATERIALS AND METHODS. Rectangular-shaped non-aged and aged (5000 thermocycles) resin nanoceramic specimens (Lava Ultimate) (n=63, each) were divided into 3 groups according to surface treatments (untreated, air abrasion, or silica coating) (n=21). The surface roughness was measured and scanning electron microscopy was used to examine one specimen from each group. Afterwards, the specimens were repaired with a composite resin (Filtek Z550) and half were sent for aging (5000 thermocycles, n=10, each). Shear bond strengths and failure types were evaluated. Roughness and bond strength were investigated by two- and three-way analysis of variance, respectively. The correlation between the roughness and bond strength was investigated by Pearson's correlation test. RESULTS. Surface-treated samples had higher roughness compared with the untreated specimens (P=.000). For the non-aged resin nanoceramic groups, aging was a significant factor for bond strength; for the aged resin nanoceramic groups, surface treatment and aging were significant factors. The failures were mostly adhesive after thermal cycling, except in the non-aged untreated group and the aged air-abraded group, which had mostly mixed failures. Roughness and bond strength were positively correlated (P=.003). CONCLUSION. Surface treatment is not required for the repair of non-aged resin nanoceramic; for the repair of aged resin nanoceramic restorations, air abrasion is recommended.

3Y-$ZrO_2$ 세라믹과 교정용 브라켓계에서 세라믹의 표면 조건에 따른 접착 거동의 변화 (Effect of Surface Condition on the Bonding Characteristics of 3Y-$ZrO_2$-Metal Bracket System)

  • 오선미;김진성;이채현
    • 대한치과기공학회지
    • /
    • 제33권1호
    • /
    • pp.47-54
    • /
    • 2011
  • Purpose: To investigate shear bonding strength between dental zirconia ceramics with different surface treatment and metal bracket. Methods: Zirconia ceramics(LAVA, 3M ESPE, USA) were divided to 4 groups according to their surface treatment; no surface treatment(G1), sand blasting(G2), silane coating(G3), and sand blasting+silane coating(G4). Specimens were bonded to metal bracket using resin bond($Transbond^{TM}XT$, 3M Unitek, USA). Shear bond strength was measured using universal test machine(3366 INSTRON. U.S.A) with cross head speed of 1 mm/min. Microstructural investigation for fracture surface was performed after shear test. Results: Shear bonding strengths of single surface treatment groups (G2 and G3) were higher than no treatment group(G1). Combined Treatment Group (G4) showed the highest shear bond strength of 9.15MPa. Microstructural observation shows that higher shear bonding strength was obtained when debonding was occurred at metal bracket/resin interface rather than zirconia ceramic/resin interface. Conclusion: Surface treatment of zirconia is necessary to obtain higher bonding strength. Combined treatment can be more effective when surface the surfaces are kept clean and homogeneous.