• Title/Summary/Keyword: Surface roughness

Search Result 5,157, Processing Time 0.04 seconds

A Study on the Surface Roughness Using the Design of Experiment in Turning Process (선반작업에서 실험계획법을 이용한 표면 거칠기에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.519-524
    • /
    • 2000
  • This paper presents a study of surface roughness prediction model by experimental design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed and depth of cut on surface roughness. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in cutting process is a method to estimate the effects of cutting parameter on surface roughness.

  • PDF

Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material (금형강의 고속가공시 절삭력 및 표면조도의 특성)

  • 손창수;강명창;이용철;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

Extraction of the Surface Roughness in Grinding Operation by Acoustic Emission Signal (AE 신호에 의한 연삭가공 표면거칠기 검출)

  • Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 1999
  • An in-process extraction method of the ground surface roughness is a bottle-neck and essential field in conventional machining process. We define the D.A.R.F(Dimensionless Average Roughness Factor) that has a roughness characteristic of ground surface. D.A.R.F include the absolute average and the standard deviation values which are the analytic parameters of the AE(Acoustic Emission) signal generated during the grinding operation. The theoretical equation between the surface roughness and the D.A.R.F has been derived from the linear regressive analysis and verified its availability through the experimentation on the surface grinding machine.

  • PDF

Comparison of contacting and non-contacting methods in measuring the surface roughness of texture (섬유의 거칠기 측정에 있어서 비접촉식 방식과 접촉식 방식의 비교)

  • 박연규;강대임;송후근;권영하
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • In order to introduce the touch to engineering and industries, it must be preceded to dstablish a quantitative barometer of the feeling. for this purpose, we developed a tactile measuring system to measure physical properties of texture, such as surface roughness, friction coefficient and compliance. The tactile measuring system uses a LASER type displacement sensor, which is a non-contacting system, in measuring the surface roughness. By considering that human tactile system is a contacting mechanism, this non-contacting method needs to be modified. As a precedent research of that, we compared the contacting and non-contacting method in this paper. Surface roughness of ten cloths were measured by using the measuring system, then compared to the test results using the Kawabata evaluation system(KES), which uses a contacting method in measuring the surface roughness.

  • PDF

Optimization of Grinding Conditions and Prediction of Surface Roughness Using Taguchi Experimental Design (Taguchi 실험계획법에 의한 연삭가공조건 최적화 및 표면거칠기 예측)

  • 곽재섭;하만경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.37-45
    • /
    • 2004
  • Grinding is a finishing operation of products in various areas. Surface roughness of industrial components obtained in grinding operation is a critical quality measure but is a function of many operating parameters and their interactions. To achieve higher surface roughness and to identify the influence of grinding parameters on surface roughness, it is an ideal situation fer using the design of experiments. This paper presents an successful optimization of grinding conditions and prediction of surface roughness using the design of experiments. From the experimental verification tests, it was observed that this approach was useful as a robust design methodology for grinding operation.

A Study on the Surface Roughness Characteristics by using SNCM616 Alloy Still (SNCM616 합금강을 이용한 표면조도 특성에 관한 연구)

  • Choi, Chul-Woong;Kim, Yong-Kyoung;Kim, Jin-Su;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.607-613
    • /
    • 2019
  • In this study, we investigate the effect of SNCM616 alloy steel, which is commonly used in industry, such as rotors and crank-shafts, on the surface roughness of CNC HBM with Ø25 mm, 8-blade reamer to objective is to analyze and present optimal cutting conditions. The higher the feedrate for the spindle speed, the rougher the surface roughness. The surface roughness was found to be better when the feed rate was lower. The resultant value of the most accurate surface roughness is Ra 0.756 ㎛, and the optimal cutting conditions are 25 rpm at spindle speed and 20 mm/min at transfer speed.

A Study of the on-Line Surface Roughness Monitoring using the Cutting Force in Face Milling Operation (정면밀링작업에서 절삭력을 이용한 On-Line 표면조도 감시에 관한 연구)

  • Baek, Dae Kyun;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.185-193
    • /
    • 1997
  • This paper presents the on-line monitoring of the surface roughness in a face milling operation. The cut- ting force was used to monitor the surface roughness, since the insert run-outs not only deteriorate surface roughness but also change cutting force. AR model and band energy method were taken to extract the fea- tures from the cutting force. The features extracted from AR modelling are more accurate about the moni- toring than those from band energy method, whereas, the computing speed of the former is slow. An artifi- cal neural network discriminated the level of the surface roughness by using the features extracted via signal processing.

  • PDF

A Study on the Simulation Model of the Surface Roughness for Turning Process

  • Hong, Min-Sung;Lian, Zhe-Man;Kim, Jong-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.230-235
    • /
    • 2000
  • In this paper, a surface generation model is presented to simulate surface roughness profile in turning operation. The simulation model takes into account the effect of tool geometry, process parameters, rotational errors of spindle, and the relative vibration between the cutting tool and workpiece. The surface roughness profiles are simulated based on the surface-shaping system. The model has been verified by comparing the experimental values with the simulation values. It is shown that the surface simulation model can properly predict the surface roughness profile.

  • PDF

Surface roughness changes in Al2O3 induced by Nd:YAG laser irradiation

  • Yeo, Sun-Mok;Lee, Seong-Jun;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.331-331
    • /
    • 2011
  • We investigated the surface roughness and surface morphology changes for the laser irradiated alumina plates by a Q-switched Nd:YAG laser. For the laser irradiation on the alumina plates with ${\lambda}$ = 1064 nm, the surface roughness decreases with the increasing energy density. The surface morphology shows that the edges of alumina grains become dull with the increasing energy density. For ${\lambda}$ = 532 nm, increasing scan time at the same energy density causes a rough surface. We discuss the physical reason of the surface roughness and surface morphology changes.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.