• 제목/요약/키워드: Surface response analysis

검색결과 1,772건 처리시간 0.05초

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

A model to analyze a buried structure response to surface dynamic loading

  • Dancygier, A.N.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.69-88
    • /
    • 2000
  • A relatively simple model of a buried structure response to a surface loading that can simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis of the response of small and medium scale buried roof slabs under surface impulsive loading shows that the model's predictions are in fairly good agreement with the experimental results. Application of the model to a study case shows the relative influence of system parameters such as, the depth of burial, the arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This model demonstrates the effect of a gap between the structure and the soil. The relative importance of including a gap opening and closure in the analysis is examined by the application of the model to a study case. This study results show that the deeper the depth of burial, the longer the gap duration, and the shorter the duration of the initial interface impact, while the higher the soil's shear resistance, the higher the gap duration, and the shorter the initial interface impact duration.

반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화 (Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method)

  • 이형욱;이근안;최석우;윤덕재;임성주;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

반응표면분석법을 이용한 혼잎나물 첨가 쌀 파운드케이크의 품질 특성 및 최적화 (Quality Characteristics and Optimization of Rice Pound Cake prepared with Euonymus alatus by Using Response Surface Methodology)

  • 김다솔;정희선;주나미
    • 한국조리학회지
    • /
    • 제23권4호
    • /
    • pp.81-92
    • /
    • 2017
  • This research was studied to optimize the recipe of rice pound cake with two concentrations of Euonymus alatus and grape seed oil, using central composite design (CCD). The mixing condition of rice pound cake was optimized by subjecting it to sensory evaluation and mechanical and physicochemical analysis, using response surface methodology (RSM). The results of the mechanical and physicochemical analysis showed significant values for color (lightness, redness, yellowness), texture (hardness, springiness, chewiness, gumminess, cohesiveness), loss rate, volume, specific volume, sweetness, saltiness, moisture content and pH (p<0.05). The results of the sensory evaluation showed significant values for color, flavor, taste, softness, appearance and overall quality (p<0.05). As a result, the optimized compounding ratio was found to be 4.28 g of Euonymus alatus and 33.18 g of grape seed oil.

반응표면분석법을 이용한 소금대용 세발나물 첨가 쌀머핀의 품질특성 및 최적화 (Quality Characteristics and Optimization of Rice Muffins prepared by Substituting Salt with Spergularia marina L. Griseb using Response Surface Methodology)

  • 김다솔;신지훈;주나미
    • 한국식품영양학회지
    • /
    • 제29권2호
    • /
    • pp.186-199
    • /
    • 2016
  • The purpose of this study was to determine the optimal composite recipe of rice muffins with 3 concentrations of Spergularia marina L. Griseb, sugar and grape seed oil, using central composite design. In addition, the mixing condition of rice muffins was optimized by subjecting it to sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). In regard to its antioxidant effects, Spergularia marina L. Griseb had a total phenol and flavonoid contents and DPPH free radical scavenging activity of 17.03 mg/g, 5.13 mg/g and 17.21%, respectively. The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, springiness, chewiness, gumminess, cohesiveness, height, volume, weight, specific volume, loss rate, pH, moisture, sweetness and saltiness (p<0.05), and the results of sensory evaluation showed significant values for color, flavor, taste, softness, appearance and overall quality (p<0.05). As results, optimal sensory ratio was found to be 6.69 g of Spergularia marina L. Griseb, 41.89 g of sugar and 30.48 g of grape seed oil.

반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계 (Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method)

  • 김홍민;김광용
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.

지면조건에 따른 코트 스포츠화 착지 충격력의 전달특성 수치해석 (Numerical Analysis of Impact Force Transfer Characteristics of Court Sport Shoes to Surface Condition)

  • 류성헌;최주형;김성호;부진후;조진래
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1974-1981
    • /
    • 2004
  • This paper is concerned with the numerical investigation of the transfer characteristics of the landing impact force exerted on court sport shoes to the sport surface condition. The reaction force occurred by the impact between court sport shoes and sport surface is absorbed by shoes to some extent, but the remaining impact force is to transfer the human body from the sole of a foot. We consider four surface conditions, asphalt, urethane, clay and wood court surfaces. For the dynamic response analysis, we construct a coupled leg-shoes FEM model and create the multi-layered composite surface model. The numerical simulations are performed by an explicit nonlinear finite element method. Through the numerical experiments, we examine the transfer characteristics of the landing impact force to the surface condition.

Mooring loads analysis of submersible aquaculture cage system using finite element method

  • Kim, Tae-Ho
    • 수산해양기술연구
    • /
    • 제42권1호
    • /
    • pp.44-53
    • /
    • 2006
  • The expansion of near shore aquaculture is feasibility of moving aquaculture facilities into the open ocean. Numerical modeling technique using finite element method was used to enable the optimum design and evaluation of submersible aquaculture cage system. The characteristics of mooring loads response in mooring lines under waves and current and their response amplitude operators were calculated for single and three point mooring configuration at the surface condition and submerged one. The static mooring loads without wave and current loading were similar for both the surface and submerged configuration. It was calculated that three point mooring was more adequate than single point mooring for the mooring configuration of submersible aquaculture cage system. The wave induced response amplitude operators for the single point mooring configuration with the influence of currents were identical to those without the influence of currents.

웨이블릿 변환을 이용한 모직물의 표면섬유 분석과 주관적 감각 평가 (Analysis of Surface Fibers by Wavelet Transform and Subjective Evaluation of Wool Fabrics)

  • 김동옥;김은애;유신정
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.53-59
    • /
    • 2002
  • The surface fibers on the fabric is one of decisive factors which affects human sensory evaluation as well as heat and moisture transfer characteristics. In this study the length and distribution of surface fibers that are extruded from the fabric surface of the wool/wool blend fabrics (14 wool fabrics and 10 wool blend fabrics) and its contribution to subjective sensory evaluation were investigated. In order to quantify the length and distribution of surface fibers, image analysis and wavelet transform technique were introduced. Instant warm-cool feeling of touch, Q$\_$max/, and contact area were also measured and related to the quantified surface fibers. To figure out the effect of surface characteristics on sensory evaluation, human sensory responses to three adjectives which represent surface characteristics and warm-cool feeling of touch were obtained and analyzed. The relationship between the quantified surface fibers assessed by wavelet energy and both warm-cool reeling of touch, Qmax, and human sensory response were discussed.

  • PDF