• 제목/요약/키워드: Surface reaction controlled

검색결과 226건 처리시간 0.031초

Development of Water Treatment Device By Fluidization Electrolysis Using Granular Ceramics

  • Ishikawa, Katsumi;Tamura, Rokurou;Shuto, Rika;Miyawaki, Jinuchi;Tanabe, Kimiko
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.737-745
    • /
    • 1996
  • In recent years, with the increase in the consumption of natural resources and energy, global environmental problems have appeared. This is a very serious environmental load on worldwide food production. For this reason, innovative techniques for production of low entropy by using effectively the energy for the ecosystemic agriculture have been expected. In this study, granular ceramics of 2 to 3mm in diameter having electrical charges at the surface were produced, using the natural raw materials of silicate minerals haing excellent moldabilities and sintering properties . Production of water having functions was attempted by effective use of the electrochemical energy of the ceramics with an efficient water treatment apparatus in which the ceramics were fluidized in water, differently from conventional systems. In the experimental results, the EC of water treated with the ceramics was not changed, but the ORP and also the pH and the DO were changed. The speed of oxidation -re uction reaction was high, and the ceramics -treated water enhanced the vigor of seeds. It can be expected that this treatment system, by which the ORP of water can be moderately controlled, is advantageous in controlling the growth of plants.

  • PDF

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화 (SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects)

  • 김은애;배병철;이철위;이영석;임지선
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.394-399
    • /
    • 2015
  • 본 연구에서는 Cu 촉매가 도입된 활성탄소섬유를 제조하여 고효율 $SO_2$ 흡착재를 제조하였다. 라이오셀 섬유를 내염화 및 탄화공정을 통해 탄소섬유를 얻었으며, $SO_2$ 흡착능을 향상시키기 위해 KOH 활성화를 사용하여 높은 비표면적 및 균일한 미세기공구조를 부여하였다. 활성탄소섬유에 Cu 촉매를 도입하기 위하여 $Cu(NO_3)_2{\cdot}3H_2O$ 수용액을 사용하였으며, 공정 시 i) 탄소섬유 내 산소 관능기의 분해반응을 촉진하고, ii) 산화구리 및 질산염의 분해로 oxygen radical이 생성되어 탄소섬유의 활성화 반응을 촉진시켰다. 이로 인해 활성탄소섬유의 미세공과 중기공 형성효과 및 탄소섬유 표면에 고르게 분산된 Cu 촉매를 확인하였다. Cu 촉매 도입 후, 활성탄소섬유에 비해 비표면적 및 미세공의 비율이 약 10% 이상 증가되었고, $SO_2$ 흡착능이 149% 이상 향상된 결과를 얻을 수 있었다. Cu 촉매도입공정 시, 전이금속 촉매효과에 의하여 발달된 미세공, 중기공 및 비표면적에 의한 물리적 흡착과 도입된 Cu 촉매에 의한 $SO_2$ 가스의 화학적 흡착반응의 시너지 효과에 기인하여 $SO_2$ 흡착능이 향상된 것으로 사료된다.

실리콘배향에 따른 산화 속도 영향과 표면 Morphology (Effects on the Oxidation Rate with Silicon Orientation and Its Surface Morphology)

  • 전법주;오인환;임태훈;정일현
    • 공업화학
    • /
    • 제8권3호
    • /
    • pp.395-402
    • /
    • 1997
  • ECR 산소 플라즈마를 사용한 건식산화법에 의해 두 가지 실리콘 배향에 대하여 실리콘 산화막을 제조한 후 Deal-Grove(D-G)모델과 Wolters-Zegers-van Duynhoven (W-Z)모델에 적용하여 시간에 따르는 막 두께의 변화를 살펴보았으며 산화속도와 산화막의 표면 morphology의 상관관계를 조사하였다. 실리콘 산화막의 두께는 Si(100)과 Si(111) 모두 반응 시간이 짧은 영역에서 선형적으로 증가하였으나 반응시간이 경과함에 따라 화학반응 속도 보다 산화막을 통과하는 반응성 라디칼들의 확산이 율속단계로 작용하여 산화속도의 증가폭이 다소 둔화되었다. D-G모델과 W-Z모델에서 확산 및 반응속도는 Si(100)보다 Si(111)이 더 큰 값을 갖기 때문에 반응속도는 1.13배 더 크게 나타났으며 이들 모델은 실험 값과 잘 일치하였다. 표면 morphology는 산화 속도가 증가해도 식각현상이 일어나지 않는 실험 조건에서 산화막의 표면 조도가 일정하였으며, 기판의 위치가 하단 전자석에 근접하고 마이크로파 출력이 증가하여 식각현상이 일어나는 실험 조건에서 표면 조도는 산화속도와 관계없이 크게 나타났다.

  • PDF

플럭스액의 첨가제에 의한 용융아연도금 공정개선 (Improvement of Hot Dip Galvanizing Process by Additive to Flux Solution)

  • 문경만;정재현;박준무;이명훈;백태실
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.513-520
    • /
    • 2016
  • Many surface protection methods have been developed to apply to constructional steels which have been used under severe corrosive environments. One of these methods, hot dip galvanizing is being widely used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for manufacturing ship and for some other industrial fields etc.. Recently, the cost of zinc is getting higher and higher, thus, it is considered that improvement of hot dip galvanizing process to reduce the cost of production should be developed possibly. In this study, additives such as acid cleaning solution, $NH_4OH$, $Al(OH)_3$ and $H_2O_2$ were added to flux solution, and omission of water washing treatment after acid cleaning was investigated with some types of flux solutions added with some additives mentioned above. The decrement of pH by adding the acid cleaning solution could be controlled due to neutralization reaction with addition of $NH_4OH$. The flux solution added with both $NH_4OH$ and $Al(OH)_3$ exhibited nearly the same color and pH value as those of orignal flux solution with no added, and the sample dipped to the flux solution which was added with additives mentioned above indicated a relatively good corrosion resistance compared to other samples. However, the flux solution added with $NH_4OH$, $Al(OH)_3$ and $H_2O_2$ exhibited a different color, sediment and a bad corrosion resistance. Consequently, it is considered that omission of water washing treatment may be able to perform by adding optimum additives to the original flux solution.

크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과 (Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing)

  • 이상훈;이태일;문경주;명재민
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.

CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구 (Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System)

  • 황안나;임명희;박범국;김지형
    • 한국방재학회 논문집
    • /
    • 제11권1호
    • /
    • pp.107-112
    • /
    • 2011
  • 본 연구는 CPC 시스템 내에서 $Tio_2$ 슬러리와 UVA 광촉매 반응을 이용한 내분비계장애물질의 하나인 Bisphenol A(BPA)의 분해와 무기화에 대한 연구이다. 실험 영향인자로는 초기농도, 촉매량, UVA 램프 파워, 온도를 고려하였고, 초기농도는 5, 10, 20 mg/L, 촉매량은 0.1, 0.5, 1.0 g/L, UV 램프는 40, 80, 120 W, 온도는 10, 20, 30 로 조절하여 실험하였다. 초기농도 가 5 mg/L일 때 BPA는 반응시간 10분에서 80%이상이 분해되었고, 1시간 이후 10 mg/L에서는 97%, 20 mg/L에서는 49%가 분해되었다. $Tio_2$ 주입량이 0.1, 0.5 g/L일 때 BPA 분해는 비슷한 경향을 보였으며, 1시간 이후 약 70%가 분해되었으며, 1 g/L에서는 30분 이후에는 80%이상이 분해되었다. 이것은 촉매량이 증가할수록 오염물질과 반응하는 활성점이 증가하여, 광촉 매 반응 또한 증가하기 때문이라 판단된다. UV 램프가 120W일 때 반응시간 10분에서 BPA는 약 60% 이상 급격히 분해 되었다. 온도에 따른 분해정도를 알아보기 위해 온도를 조절하며 수행하였고, 온도에 따른 영향은 크지 않았다. 10 에서는 1시간 이후 46% 분해되었으며, 20에서 67%, 30에서는 69% 분해되었다.

분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조 (Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis)

  • 김선경;이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.

네자리 Schiff Base 전이금속(II) 착물들에 의한 SOCl$_2$의 전기화학적 환원 : 촉매 효과 (Electrochemical Reduction of Thionyl Chloride by Tetradentate Schiff Base Transition Metal(II) Complexes : Catalytic Effects)

  • 김우성;최용국;김찬영;조기형;김종순
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.702-710
    • /
    • 1993
  • 이핵성 네자리 schiff base Co(II), Ni(II), Cu(II) alc Fe(II) 착물들을 촉매로 사용하여 몰리브데늄 전극과 유리질 탄소 전극에서 SOCl2의 전기화학적 환원반응을 조사하였다. 이들 전이금속(II) 착물들은 먼저 전극 표면에 흡착된 후 촉매로 작용하였으며, 각각의 전이금속(II) 착물들의 촉매 화합물은 SOCl$_2$ 를 환원시킬 수 있는 최적 조건의 농도를 나타냈다. SOCl$_2$의 환원반응에 대한 촉매 효과는 몰리브데늄 전극에서보다 유리질 탄소전극에서 더 크게 나타났고, 환원 전류는 최고 120% 정도 증가하였다. 주사속도 증가에 따른 SOCl$_2$의 환원 전류는 증가하였고 환원 전위는 음전위쪽으로 이동되었으며, SOCl$_2$의 환원과정은 확산지배적인 반응으로 진행되었다.

  • PDF

실험적 치은염이 치조골 치유에 미치는 영향에 관한 연구 (A STUDY ON THE EFFECTS OF THE EXPERIMENTAL GINGIVITIS TO THE REPAIR OF ALVEOLAR BONE)

  • 안형준;이만섭
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.461-474
    • /
    • 1993
  • This study was performed to estimate the effect of plaque control on the progress of the repair pattern of the alveolar bone surface after bone surgery. In this experiment six mongrel dogs were used, four of them were as experimental group and others were as control. In the case of experimental group, dental floss ligature was tied over the neck of crown for permiting of plaque accumulation during one week before surgery and oral hygiene procedures were not performed. In control group, all the surgical intervention was done as same procedure with experimental except oral hygiene program. After surgery plaque was controlled during one week with using the chlorhexidine brushing. Animals were sacrificed at 1,2,4,6 weeks after osseous surgery. The results were as follows : 1. The alveolar bone defects were covered with regenerated epithelium at one week, matrix change of granulation tissue on subcutaneous area was observed, and new bone formation was initiated from the surface of the bone defects. 2. The connective tissue arrangement revealed more dense, new bone formation by osteoblasts was active at 2 weeks and proliferation of gingival epithelium and alveolar bone tissue were evident at 4 weeks, and almostly recovered to normal condition at 6 weeks. 3. In experimental group, inflammatory reaction was persistent in early stage and bone repair was delayed compared to control group. 4. In control group, matrix change of granulation tissue was initiated from one week, regeneration of gingival epithelium and maturation of subcutaneous conective tissue and new bone formation were evident at 2 weeks, so almost normal bone regeneration was observed at 4,6 weeks.

  • PDF