• Title/Summary/Keyword: Surface range

Search Result 5,802, Processing Time 0.05 seconds

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

MOCVD Growth and Characterization of Heteroepitaxial Beta-Ga2O3 (MOCVD 성장법을 이용한 Beta-Ga2O3 박막의 헤테로에피택시 성장 특성)

  • Jeong Soo Chung;An-Na Cha;Gieop Lee;Sea Cho;Young-Boo Moon;Myungshik Gim;Moo Sung Lee;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this study, we investigated a method of growing single crystal 𝛽-Ga2O3 thin films on a c-plane sapphire substrate using MOCVD. We confirmed the optimal growth conditions to increase the crystallinity of the 𝛽-Ga2O3 thin film and confirmed the effect of the ratio between O2 and Ga precursors on crystal growth on the crystallinity of the thin film. The growth temperature range was 600~1100℃, and crystallinity was analyzed when the O2/TMGa ratio was 800~6000. As a result, the highest crystallinity thin film was obtained when the molar ratio between precursors was 2400 at 1100℃. The surface of the thin film was observed with a FE-SEM and XRD ω-scan of the thin film, the FWHM was found to be 1.17° and 1.43° at the and (${\bar{2}}01$) and (${\bar{4}}02$) diffraction peaks. The optical band gap energy obtained was 4.78 ~ 4.88 eV, and the films showed a transmittance of over 80% in the near-ultraviolet and visible light regions.

Development of Urban Competitiveness Evaluation Index on Facility Layout of Multi-dimensional Development of Farilway Facility Site (철도시설부지 입체개발의 시설 배치에 대한 도시경쟁력 평가지표 개발)

  • Kang, Youn Won;Kim, Jong Gu;Shin, Eun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.587-593
    • /
    • 2024
  • Recently, countries such as Japan and France are actively using three-dimensional development of land to secure available land. In Korea, too, the lack of available land within cities is a major problem, and in particular, the problem of decline due to disconnection due to division due to the railroad is emerging. As a solution to this, interest in three-dimensional development is increasing day by day, but the application or legal effectiveness of the concept is still lacking. Therefore, in this study, assuming that the Gyeongbu Line railway in Busan is underground, we attempted to apply the type of multi-dimensional development appropriate for each region to the land that would be created, and to predict how much it would contribute to urban competitiveness by arranging the necessary facilities for each part. To this end, we have developed an urban competitiveness index that can evaluate the layout of facilities by region, and since the range of the region is different from the existing evaluation indicator, it is judged that the three-dimensional development of the railway facility site can have a positive impact on the competitiveness of the city as a result of the prediction through a subjective survey.

A New k-Distribution Scheme for Clear-Sky Radiative Transfer Calculations in Earth's Atmosphere. Part II: Solar (Shortwave) Heating due to H2O and CO2

  • Ming-Dah Chou;Jack Chung-Chieh Yu;Wei-Liang Lee;Chein-Jung Shiu;Kyu-Tae Lee;Il-Sung Zo;Joon-Bum Jee;Bu-Yo Kim
    • Korean Journal of the Atmospheric Sciences
    • /
    • v.78 no.9
    • /
    • pp.2657-2675
    • /
    • 2021
  • A new k-distribution scheme of longwave radiation without the correlated-k-distribution assumption is developed. Grouping of spectral points is based on the line-by-line (LBL)-calculated absorption coefficient k at a few sets of reference pressure pr and temperature θr, where the cooling rate is substantial in a spectral band. In this new scheme, the range of k(pr, θr) of a band is divided into a number of equal intervals, or g groups, in log10(kr). A spectral point at the wavenumber ν is identified with one of the g groups according to its kν(pr, θr). For each g group, a Planck-weighted k-distribution function Hg and a nonlinearly averaged absorption coefficient ${\bar{k}}_g(p,{\theta})$ are derived. The function Hg and the absorption coefficient ${\bar{k}}_g(p,{\theta})$ constitute the new k-distribution scheme. In this k-distribution scheme, a spectral point can only be identified with a g group regardless of pressure and temperature, which is different from the correlated-k distribution scheme. The k-distribution scheme is applied to the H2O, CO2, O3, N2O, and CH4 absorption bands, and results are compared with LBL calculations. To balance between the accuracy and the computational economy, the number of g groups in a band of a given gas is chosen such that 1) the difference in cooling rate is <0.1 K day-1 in the troposphere and <1.0 K day-1 in the stratosphere and 2) the difference in fluxes is <0.5 W m-2 at both the top of the atmosphere and the surface. These differences are attained with 130 g groups, which is the sum of the g groups of all five gases.

Monitoring Roadbed Stability to Prevent Cascading Hazards in Daejeon City, South Korea, Using Sentinel-1 SAR Data

  • Manik DAS ADHIKARI;Seung-Bin LEE;Seong-Wuk KIM;Hyeon-Jun KIM;Jeremie TUGANISHURI;Sang-Guk YUM;Ji-Myong KIM
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.102-111
    • /
    • 2024
  • Roadbed stability is paramount in urban areas as it directly affects public safety and city operations. South Korea's major metropolis has experienced 1127 cases of ground subsidence since 2014, affecting subways, roads, railways, and construction sites. Notably, about 40% of these incidents coincide with heavy summer rainfall, while 60% resulted from utility damage, improper backfill, and groundwater fluctuations. Subsequently, roadbed instability leads to a range of cascading hazards, including sinkholes and road failures, endangering public safety and the economy. Therefore, continuous monitoring of roadbed stability and implementing proactive measures are essential for a resilient transportation infrastructure. However, terrestrial in-situ observations like GPS provide accurate surface's displacement with high temporal accuracy but limited spatial resolution. To address this issue, we used the InSAR permanent scatterer (PSInSAR) technique to process 35 Sentinel-1 SLC datasets acquired between 2017 and 2022 to monitor and prevent cascading hazards in Daejeon City, South Korea. The results revealed an average subsidence rate of -0.88mm/year with a maximum of -7.73 mm/year. Notably, the southern part of the city exhibited significant roadbed instability, with an average and maximum cumulative subsidence of -5.13 mm and -44.95 mm, respectively. The deformation data was then integrated with road geometry to develop a vulnerability map of the city, highlighting the pronounced roadbed deformation in the southern region. Time-series subsidence variations correlated with groundwater fluctuations data from 2017 to 2022, showing a decline in groundwater levels from 4.63m to 9.9m in the southern region. Furthermore, a comparison between subsidence rates and effective shear wave velocity (Vs30) revealed that most subsidence events were associated with Vs30 values below 420 m/sec, indicating a clear lithological influence on the spatial distribution of roadbed instability. Thus, the integrated geotechnical and hydrogeological data with PSInSAR monitoring can better understand the processes responsible for roadbed instability in areas with small-scale variations.

Characteristics of Dielectric Fabricated with BT (BaTiO3)-TiO2-ZrO2 Systems and the Dielectric Resonator Filter (BT (BaTiO3)-TiO2-ZrO2계 유전체 세라믹스를 이용한 유전체 공진기 및 필터 특성)

  • Yong Min Jeon;Yeong Nam Ji;Sunggyun Kim;Jaebok Lee;Si Hong Ryu;Seong Eui Lee;Je Do Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.619-629
    • /
    • 2024
  • Dielectric resonators with BT (BaTiO3), TiO2, and ZrO2 powders without using the rare earth oxide powders were fabricated for the target relative permittivity of between 30 and 40 and the filter characteristics of metal cavity filter with the dielectric resonators inside were evaluated. Powder characteristics such as particle size distributions and specific surface areas were measured for the composing raw powders to evaluate the powder states. After measuring and comparing the relative permittivity and dielectric losses of the dielectrics of three different compositions, the specific composition was determined (BT:TiO2:ZrO2=1:4:1 in mole) and the dielectric resonators were fabricated with that composition, which shows relative permittivity of around 35. The powder characteristics of mixed powders with the determined composition were also evaluated to investigate any agglomerates possibly formed in the process of powder mixing. Dielectric resonators were fabricated by the powder compaction (compaction pressure: 31 MPa) and firing method. The peak firing temperature was 1,300℃ and the holding time at the peak temperature was 3 hours. After firing, cylindrical resonators with one end closed were mechanically machined to eliminate any size differences in dielectric resonator which can be caused by the shrinkage difference during each firing process of resonator fabrication. After measuring the resonator characteristic in the frequency range from 3.6 GHz to 3.8 GHz by changing the height of dielectric resonator, the height of the resonator was determined to be 11.7 mm. Finally, filter characteristics of TM (Transverse Magnetic) mode metal cavity filters with the dielectric inside were measured and evaluated. The metal cavity filters with the dielectric resonators showed the insertion losses of below 1 dB with the band widths of 200 MHz and over 20 dB return losses from 3.6 GHz to 3.8 GHz, whose filter characteristics well satisfied the requirements of the band pass filters for the base stations and it was proved that the dielectrics using the proposed composition could be used as dielectric resonator.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Analysis of Indicator Microorganism Concentration in the Rice Cultural Plot after Reclaimed Water Irrigation (하수처리수 관개후 벼재배 시험구에서 지표미생물 거동 분석)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.112-121
    • /
    • 2004
  • A study was performed to examine the effects of UV-disinfected reclaimed water on microorganism concentration during rice culture. Four treatments were used and each one was triplicated to evaluate the changes of microorganism concentrations: stream water irrigation (STR), biofilter effluent irrigation (BE), UV-disinfected water irrigation with dose of 6 mW ${\cdot}$ s $cm{-2}$ (UV-6), and UV-disinfected water irrigation with dose of 16 mW ${\cdot}$ s $cm{-2}$ (UV-16). The indicator microorganisms of interest were total coliform (TC), fecal coliform (FC), and E. coli. The biofilter effluent from 16-unit apartment sewage treatment plant was used as reclaimed water and flowthrough type UV-disinfection system was used. Concentrations of indicator microorganisms in the treatment plots ranged from $10^2$ to $10^5$ MPN/100 mL during 24 hours after irrigation in May and June, where initial irrigation water for transplanting reparation was biofilter-effluent without UV-disinfection. It implies that initial irrigation using only non-disinfected reclaimed water for puddling in paddy field can be health-concerned because of more chance of farmer's physical contact with elevated concentration of microorganisms. The concentrations of microorganisms varied widely with rainfall, and treatments using UV-disinfected water irrigation showed significantly lower concentrations than others and their levels were within the range of paddy rice field with normal surface water irrigation. The mean concentrations of STR and BE during growing season were in the range of 4 ${\times}\;10^3$ MPN/100 mL for TC, and 2${\times}\;10^3$ MPN/100 mL for FC and E, Coli, While mean concentrations of UV-S and UV-lS were less than 1${\times}\;10^3$ MPN/100 mL for all the indicator microorganisms. Overall, UV-disinfection was thought to be feasible and practical alternative for agricultural reuse of secondary level effluent in Korea.

Estimation of the Required Number of Fan Coil Unit for Surplus Solar Energy Recovery of Greenhouse (온실의 잉여 태양에너지 회수용 FCU 소요대수 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Kim, Ha Neul;Kang, Donghyeon;Lee, Siyoung;Son, Jinkwan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • In this study, previously reported surplus solar energy-related study result and current status of fan coil unit (FCU) for cooling and heating installed in the current sites were briefly examined and then a method to determine the number of FCUs required to recover surplus solar energy was schematically proposed to provide basic data for researchers and technical engineers in this field. The maximum, mean, and minimum outside temperatures during the experiment period were about $28.2^{\circ}C$, $4.4^{\circ}C$, and $-11.5^{\circ}C$, respectively. The horizontal surface solar radiation level outside the greenhouse was in a range of $0.8-20.5MJ{\cdot}m^{-2}$ and mean and total solar radiation were $10.8MJ{\cdot}m^{-2}$ and $1,187.5MJ{\cdot}m^{-2}$. The mean temperature and relative humidity in the greenhouse during the daytime were in a range of 18.8-45.5 and 53.5-77.5%. The total surplus solar energy recovered from the greenhouse during the experiment period was approximately 6,613.4MJ, which could supplement about 6.7% of the total heating energy 98,600.2 MJ. In addition, the number of FCUs installed for heating varies case to case, although similar FCUs are used. Thus, it is necessary to study the installation height, orientation and installation distance as well as the appropriate number of FCUs from the efficient and economical viewpoints. The required numbers of FCUs for surplus solar energy recovery were 8.4-10.9units and 6.1-8.0units based on air mass and circular flow rate that passed through the FCUs. Considering calculation methods and the risks such as efficiency and use environments of FCUs, it was found that about nine units (one unit per $24m^3$ approximately) needed to be installed. The required number of FCUs for surplus solar energy recovery was around one unit per $24m^3$ approximately.

Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response (지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안)

  • Sun, Chang-Guk
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.203-218
    • /
    • 2010
  • The site categorization and corresponding site amplification factors in the current Korean seismic design guideline are based on provisions for the western United States (US), although the site effects resulting in the amplification of earthquake ground motions are directly dependent on the regional and local site characteristic conditions. In these seismic codes, two amplification factors called site coefficients, $F_a$ and $F_v$, for the short-period band and midperiod band, respectively, are listed according to a criterion, mean shear wave velocity ($V_S$) to a depth of 30 m, into five classes composed of A to E. To suggest a site classification system reflecting Korean site conditions, in this study, systematic site characterization was carried out at four regional areas, Gyeongju, Hongsung, Haemi and Sacheon, to obtain the $V_S$ profiles from surface to bedrock in field and the non-linear soil properties in laboratory. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined, and thus the site period in Korea was distributed in the low and narrow band comparing with those in western US. Based on the geotechnical characteristic properties obtained in the field and laboratory, various site-specific seismic response analyses were conducted for total 75 sites by adopting both equivalent-linear and non-linear methods. The analysis results showed that the site coefficients specified in the current Korean provision underestimate the ground motion in the short-period range and overestimate in the mid-period range. These differences can be explained by the differences in the local site characteristics including the depth to bedrock between Korea and western US. Based on the analysis results in this study and the prior research results for the Korean peninsula, new site classification system was developed by introducing the site period as representative criterion and the mean $V_S$ to a depth of shallower than 30 m as additional criterion, to reliably determine the ground motions and the corresponding design spectra taking into account the regional site characteristics in Korea.