• Title/Summary/Keyword: Surface protection materials

Search Result 231, Processing Time 0.028 seconds

An Experimental Study about Characteristics of Penetrating Surface Protection Materials to Promote Concrete Structure Durability (콘크리트 구조체 내구성 향상을 위한 침투성 표면 보호재의 특성에 관한 실험적 연구)

  • Lee Jeoung-Yun;Cho Byoung-Young;Kim Young-Keun;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.93-96
    • /
    • 2005
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. Recently, durability decline of concrete construction by environmental pollution is becoming social problem. The durability of high durable structure is declined by carbonate, chloride permeation and deterioration of waterproof performance, etc. This study of penetrating surface protection materials evaluated about carbonation, chloride permeation, waterproof performance, and durability of abrasion, etc. It is profitable in durability that spread penetrating surface protection materials

  • PDF

Study of microstructure of carbon-based materials in plasma wind tunnel testing

  • Kang, Bo-Ram;Lim, Hyeon-Mi;Oh, Phil-Yong;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.2-200.2
    • /
    • 2016
  • Carbon-based materials have been known as ablative material and have been used for thermal protection systems. Ablation is an erosive phenomenon that results in thermochemical and thermomechanical changes on materials. Ablation resistance is one of the key properties that determines performance and life-time of the thermal protection material under ablative conditions. In this study, ablation properties of graphite, 3-dimensional (C/C) composites (needle-punched type and rod type) were investigated byusing a plasma wind tunnel which produce a supersonic plasma flow from a segmented arc heater with the power level of 0.4 MW. The mass losses and surface roughness changes which contain main result of the ablation are measured. A morphological analysis ofthe carbon-based materials, before and after the ablation test, are performed through field emission scanning electron microscopy (FE-SEM) and non-contact 3D surface measuring system. Electronic balance and a portable surface roughness tester were used for evaluation of the recession and mass loss of the test samples.

  • PDF

Corrosion protection behavior of AZ31 magnesium alloy with cathodic electrophoretic coating pretreated by cerium based conversion coatings at various pH

  • Fazal, Basit Raza;Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.268-268
    • /
    • 2015
  • The corrosion protection behavior of AZ31 magnesium alloy (Mg alloy) with cathodic electrophoretic coating (E-coating) pretreated by cerium-based conversion coatings at various pH was investigated in this study. Cerium-based conversion coatings (CeCCs) were deposited on AZ31 Mg alloy by immersion treatment in the nitrate-based cerium salt solution. The morphology and composition of the CeCCs were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion properties of the AZ31 Mg alloy pretreated with cerium coating and subsequently E-coated were studied during salt-spray testing. The surface morphologies of the E-coated Mg alloy were examined in detail after different testing times using digital photography. It was found that the protective properties of the E-coating on AZ31 Mg alloy generated are heavily dependent upon the CeCC factors such as treatment time, coating thickness and pH of the solution.

  • PDF

A Study on the Surface Properties Test of the Grinding Disk Assembly for Crushing Materials in Secondary Cells (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 표면 특성 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • Metal raw materials and chemical additives, which are raw materials for secondary batteries, are pulverized by the high-speed rotation of the Grinding Disc of the Classifier Separator Mill (CSM). Grinding discs are required to withstand abrasion, corrosion, high-speed rotational force and impact. In order to analyze the stability of domestic and foreign grinding discs, quality tests including surface roughness, surface lubrication, surface state measurement, and surface 3D shape measurement were analyzed. When producing developed products, it shows that excellent products can be produced.

Influences of Coatings and Solution Corrosivity on Cathodic Protection of Metallic Materials

  • Yoo, Y.R.;Chang, H.Y.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Painting has protected metallic stack but the paint films may be degraded and corrosion problem can be arisen. To protect the painted metal stack, cathodic protection can be applied. If cathodic protection is applied to bare metal, only small area may be protected. However, if cathodic protection is applied to painted metal surface, large area can be protected and the lifetime of paint films can be extended. High corrosion resistant alloys were corroded at a Flue Gas Desulfurization (FGD) facility of power plant within a short period and thus cathodic protection can be used to protect these metals. On the base of computer simulation, if cathodic protection is applied to bare metal in a FGD environment, it was estimated that applied current could almost be spent to protect area near the anode. However, if cathodic protection is applied to high resistant-coated metal, the much larger area from the anode could be effectively protected.

An Effect of surface treatment on a Protection Ballistic Limits in armor material (표면처리가 장갑재료의 방호한계에 미치는 영향)

  • 손세원;김희재;이두성;홍성희;유명재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Effect of Additional Ag Layer on Corrosion Protection of Cu-Electrodeposited AZ31 Mg Alloy

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.97-97
    • /
    • 2017
  • This study investigated the corrosion protection by electrodeposited copper layer on AZ31 Mg alloy with and without additional silver layer by immersion test, salt spray test, OCP transient and potentiodynamic polarization experiment. The single electrodeposited Cu layer on AZ31 Mg alloy showed a nodular structure with many imperfections of crevices between the nodules, which resulted in the fast initiation of pitting corrosion within first few hours of immersion. Double-layer coating of Cu and outer Ag layer slightly increased the initiation time for pitting corrosion. Triple-layer coatings of Cu/Ag/Cu exhibited the most efficient corrosion protection of AZ31 Mg alloy, compared to the single- and double-layer coatings. Surface morphology of the outer Cu layer in the triple-layer was changed from the nodular structure to fine particle structure with no crevices due to the presence of an additional Ag layer. Thus, the improved corrosion resistance of AZ31 Mg alloy by electrodeposited Cu/Ag or Cu/Ag/Cu layers is readily ascribed to the decreased number of imperfections in the electrodeposited layers due to the additional silver layer. It is concluded that the additional silver layer provides many nucleation sites for the second Cu plating, resulting in the formation of finer and denser structure than the first Cu electrodeposit.

  • PDF

Channel Protection Layer Effect on the Performance of Oxide TFTs

  • KoPark, Sang-Hee;Cho, Doo-Hee;Hwang, Chi-Sun;Yang, Shin-Hyuk;Ryu, Min-Ki;Byun, Chun-Won;Yoon, Sung-Min;Cheong, Woo-Seok;Cho, Kyoung-Ik;Jeon, Jae-Hong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.653-659
    • /
    • 2009
  • We have investigated the channel protection layer (PL) effect on the performance of an oxide thin film transistor (TFT) with a staggered top gate ZnO TFT and Al-doped zinc tin oxide (AZTO) TFT. Deposition of an ultra-thin PL on oxide semiconductor films enables TFTs to behave well by protecting the channel from a photo-resist (PR) stripper which removes the depleted surface of the active layer and increases the carrier amount in the channel. In addition, adopting a PL prevents channel contamination from the organic PR and results in high mobility and small subthreshold swings. The PL process plays a critical role in the performance of oxide TFTs. When a plasma process is introduced on the surface of an active layer during the PL process, and as the plasma power is increased, the TFT characteristics degrade, resulting in lower mobility and higher threshold voltage. Therefore, it is very important to form an interface using a minimized plasma process.