• Title/Summary/Keyword: Surface polishing

Search Result 893, Processing Time 0.025 seconds

Effect of Commercial Effervescent Vitamin Tablets on Bovine Enamel

  • Jeong, Moon-Jin;Lee, Myoung-Hwa;Jeong, Soon-Jeong;Kim, So-Jeong;Ko, Myeong-Ji;Sim, Hye-Won;Lee, Ju-Young;Im, Ae-Jung;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.261-270
    • /
    • 2019
  • Background: In this study, four types of effervescent vitamins marketed in Korea were analyzed for their acidity and vitamin content. For this purpose, bovine teeth were immersed in vitamin, and surface microhardness and appearance were measured before and after immersion to evaluate tooth demineralization and erosion. Methods: Bovine permanent incisors with sound surface enamel were cut to 5×5 mm size, embedded in acrylic resin, and polished using a polishing machine with Sic-paper. The prepared samples were analyzed for pH, vitamin content, and surface hardness before and after immersion using a surface microhardness meter. Demineralization of surface dental enamel was observed using a scanning electron microscope. Results: The average pH of the four effervescent vitamins was less than 5.5; the pH of the positive control Oronamin C was the lowest at 2.76, while that of the negative control Samdasoo was the highest at 6.86. The vitamin content was highest in Berocca and lowest in the DM company Multivitamin. On surface microhardness analysis, surface hardness values of all enamel samples were found to be decreased significantly after 1 and 10 minutes of immersion (p<0.05). After 10 minutes of immersion, there was a significant difference in the decrease in hardness between the experimental groups (p<0.05). Scanning electron microscopy observation showed that dental enamel demineralization after 10 minutes of immersion was the most severe in Oronamin C except for Samdasoo, followed by DM company Multivitamin and VitaHEIM. Immersion in BeroNew and Berocca resulted in similar effects. Conclusion: There is a risk of tooth erosion due to decreased tooth surface microhardness when using the four types of effervescent vitamins and vitamin carbonated beverages with pH below 5.5. Therefore, high pH vitamin supplements are recommended to prevent tooth erosion.

The Effect of Sputtering Process Variables on the Properties of Pd Alloy Hydrogen Separation Membranes (스퍼터 공정변수가 팔라듐 합금 수소분리막의 특성에 미치는 영향)

  • Han, Jae-Yun;Joo, Sae-Rom;Lee, Jun-Hyong;Park, Dong-Gun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.248-257
    • /
    • 2013
  • It is generally recognized that thin Pd-Cu alloy films fabricated by sputtering show a wide range of microstructures and properties, both of which are highly dependent on the sputtering conditions. In view of this, the present study aims to investigate the relationship between the performance of hydrogen separation membranes and the microstructure of Pd alloy films depending on sputtering deposition conditions such as substrate temperature, working pressure, and DC power. We fabricated thin and dense Pd-Cu alloy membranes by the micro-polishing of porous Ni support, an advanced Pd-Cu sputtered multi-deposition under the conditions of high substrate temperature / low working pressure / high DC power, and a followed by Cu-reflow heat-treatment. The result of a hydrogen permeation test indicated that the selectivity for $H_2/N_2$ was infinite because of the void-free and dense surface of the Pd alloy membranes, and the hydrogen permeability was 10.5 $ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ for a 6 ${\mu}m$ membrane thickness.

Reel-to-reel electropolishing of Ni alloy tapes for IBAD template (IBAD template용 니켈 합금의 연속 전해연마)

  • Ha H. S;Kim H. K;Ko R. K;Kim H. S;Song K. J;Park C;Yoo S. I;Joo J. H;Moon S. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.69-73
    • /
    • 2004
  • Ni alloy tape is electropolished to be used as a metal substrate for fabrication of IBAD (ion-Beam Assisted Deposition)-MgO texture template fur HTS coated conductor. Electropolishing is needed to obtain a very smooth surface of Ni alloy tape because the in-plane texture of templates is sensitive to the roughness of metal substrate. The critical current of YBCO coated conductor depends on the texture of YBCO that depends on the texture of the IBAD MgO layer. And so the smoothness of the metal substrate is directly related to the superconducting properties of the coated conductor. In this study, we have prepared a reel-to-reel electropolishing apparatus to polish the Ni alloy tapes for IBAD. Various electropolishing conditions were investigated to improve the surface roughness. Hastelloy tape is continuously electropolished with high polishing current density (0.5 ∼ 2 A/$\textrm{cm}^2$) and fast processing time (1 ∼ 3 min). Polished hastelloy tapes have surface roughness(RMS) of below 1 nm on a 5 ${\times}$ 5 $\mu\m^2$ from AFM and SEM.

  • PDF

Modifications of a Grinding Machine Structure for the Improved Precision Machining (가공정도 향상을 위한 평면 연삭기의 설계 개선)

  • Shon, Jae-Yul;Ro, Seung-Hoon;Lim, Yo-Han;Lee, Jong-Hyung;Lee, Jae-Yul;Song, Eun-Seok;Lee, Tae-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 2009
  • Among a few items with world wide competitiveness are the semiconductor and the LCD. Grinding/polishing is the most significant process in manufacturing semiconductor wafers and LCD panels, the most critical quality of which is the precision rate of the machined surfaces. It is well known that the control of the vibrations is the major factor in maintaining superb machined surfaces. In this paper the dynamic properties of a grinding machine have been investigated through the frequency analysis test and the computer simulation to deduce ideas of design modifications for improved stability. The alterations have been applied to the simulation model, which is supposed to have identical dynamic property with the original structure, to identify the effects and to finally achieve the satisfactory level of stability. The result shows that the machine can have much improved stability with relatively simple design changes, and also can improve the surface quality of the products.

  • PDF

Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment (폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Kim, Kyeong-Min;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.

The Effect of Configuration and Surface Polishing in Tungsten Electrode Tip for Gas Tungsten Arc Welding on the Arc Characteristics (GTA용접용 텅스텐 전극팁의 형상과 연마 상태가 아크특성에 미치는 영향)

  • 조상명;서상균
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2001
  • The welding quality by Gas Tungsten Arc Welding shows very high level, but the welding speed is lower than that of gas metal arc welding. Also, the welding quality by automatic GTAW is variable as the arc characteristics is changed by the consumption of electrode tip. The purpose of this study is to investigate the relation between the properties of tungsten electrode tip and the various arc characteristics at high current region. In this study, the high welding current 200A was applied to the repeated arc start test and long term arcing test using the $\phi$3.2 tungsten electrodes with cone angle 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$sharp tip, and 60$^{\circ}$surface polished (S.P.) sharp tip. It was confirmed that the maximum arc pressure by the initial electrode condition was highest in 45$^{\circ}$sharp tip, and the next in 60$^{\circ}$sharp tip, the last was in 30$^{\circ}$sharp tip and 60$^{\circ}$S.P.. But, the maximum arc pressure after the repeated arc start test and long term arcing test was decreased considerably. But, the maximum arc pressure was highest also in 45$^{\circ}$ sharp tip after the tests, the next was in 30$^{\circ}$sharp tip, and the last was in 60$^{\circ}$sharp tip and 60$^{\circ}$S.P.. The arc start characteristics was the most excellent in 60$^{\circ}$S.P., By long term arcing test, the lanthania included in tungsten electrode was extinguished at tip surface preferentially, therefore the arc characteristics of electrode tip got worse.

  • PDF

EFFECT ON THE SHEAR BOND STRENGTH OF A COMPOMER TO DENTIN ACCORDING TO SURFACE CONDITIONING (상아질 표면처리방법이 compomer의 전단결합 강도에 미치는 영향에 관한 연구)

  • Kim, Soo-Mee;Cho, Young-Gon;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.2
    • /
    • pp.597-606
    • /
    • 1998
  • The purpose of this study was to evaluate the shear bond strength of the Compoglass Carvifil bonded on the dentin surface according to etching or non-etching and two time application or three time application of single component. Human non-carious 60 extracted 3rd molar were used. The occlusal dentin surfaces of all teeth were exposed with Diamond Wheel Saw and polished with Lapping & Polishing machine(South Bay Technology Co., U.S.A). The teeth were then distributed randomly into four groups of 15 teeth each and dentin surface were conditioned as following. Control group : Non-etching, two times application of Syntac Single Component. (According to manufacture's instruction) Experimental group 1 : Non-etching, three times application of Syntac Single Component. Experimental group : 2 Etching, two times application of Syntac Single Component. Experimental group 3 : Etching, three times application of Syntac Single Component. Compoglass were bonded to exposed dentin surfaces and all samples were placed in distilled water for 7 days. The shear bond strengths were measured by universal testing machine (SHIMADAZU AUTOGRAPH, AGS-4D., Japan). The results were as follows : 1. Experimental group 3 revealed the highest value (30.75${\pm}$4.74 MPa) and control group revealed the lowest value(14.85${\pm}$2.69 MPa). There was significant difference of shear bond strength among four groups(P<0.01) 2. The acid-etching groups (experimental group 2, 3) had higher shear bond strengths than non etching groups(control group and experimental group 1). 3. The additional application of Syntac single component groups revealed a higher bond strength than two times application groups (control group and experimental group 2).

  • PDF

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

Remanufacturing Process and Improvement in Fatigue Life of Spherical Roller Bearings (자동조심 롤러 베어링의 재제조 공정 및 피로수명 향상)

  • Darisuren, Shirmendagva;Amanov, Auezhan;Kim, Jun-Hyong;Lee, Seung-Chul;Choi, Gab-Su;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • This study proposes a sustainable bearing remanufacturing process using the ultrasonic nanocrystal surface modification (UNSM) technique. The UNSM technique is a newly developed and sophisticated surface modification technique that can increase the mechanical properties and improve the friction and wear performance of materials. Taking advantage of the bearing manufacturing process is the most significant way of optimizing the life of a bearing. The proper maintenance and usage of repaired bearings can increase their life to be equal to or greater than that of new bearings. This paper discusses the restoration of certain mechanical properties of worn, damaged, and discarded bearings, and suggests a remanufacturing process for used bearings, which can impart them with a lifespan equivalent to that of new bearings. The most damaged part of the discarded bearings is the raceway, which is the site of accumulated fatigue. The existing polishing or barrel finishing processes can recover the accumulated fatigue only partially. Rolling contact fatigue tests performed on UNSM-treated new and used specimens polished after $4{\times}10^6$ cycles reveal that UNSM-treated new specimens exhibit the longest fatigue life compared to other specimens. This study verifies the proposed complete fatigue recovery process, which can increase the fatigue life of used bearings to a level greater than that of new bearings.