• 제목/요약/키워드: Surface phase diagram

Search Result 42, Processing Time 0.027 seconds

Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method (전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석)

  • Lee, Ji-Hoon;Baik, Young-Nam;Kim, Young-Seok;Shin, Seung-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Effects of Aluminum Tristearate in the Preparation of Sustained Release Ethambutol Hydrochloride Microcapsules (지속 방출형 염산에탐부톨 마이크로캅셀의 제조에 있어서 스테아린산알루미늄의 효과)

  • Yoo, Bong-Shin
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.175-180
    • /
    • 1988
  • The role and effect of aluminum tristearate in microencapsulation were investigated based on the dispersion system of ethambutol hydrochloride in acetone-liquid paraffin. Eudragit RS was used as a wall-forming material. Eudragit RS microcapsules prepared using aluminum tristearate were uniform, free-flowing particles. The phase diagram of ethambutol hydrochloride-Eudragit RS-aluminum tristearate indicated that spherical microcapsules ranging from 250 to 1400 ${\mu}m$ in diameter could be prepared only in a very limited region. Instrumental analysis using an energy dispersive-type X-ray microanalyser and a scanning electron microscope showed that aluminum tristearate was localized near the surface of microcapsules. From these results, it was presumed that aluminum tristearate reduced the phase tension between Eudragit microcapsules and liquid paraffin. The dissolution rates of ethambutol hydrochloride from Eudragit RS microcapsules were consideraly lower than those from ethambutol hydrochloride powders and decreased as the amount of aluminum tristearate decreased.

  • PDF

Development and Current Status of Gaseous Nitrocarburizing

  • Bell, Tom
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.68-83
    • /
    • 1989
  • Physical metallurgy aspects of gaseous ferritic nitrocarburising are reviewed in the light of basic studies undertaken since 1975 which have illustrated inconsistencies between the iron-carbon-nitrogen ternary phase diagram at $570^{\circ}C$ and the experimental observation of the co-existence of the ${\varepsilon}$ carbonitride phase and ferrite. Thermodynamic investigations by Xu and Li together with those by Slycke et al are reviewed to illustrate compatability between a modified isothermal section of the Fe-C-N system and the formation and growth of a monophased ${\varepsilon}$ structure under a variety of processing conditions. The implications of the modified diagram in terms of innovations in industrial ferritic nitrocarburising practice are discussed, together with limitations on the control of the process. The importance of the developing technology of black nitrocarburising for enhanced wear, fatigue, and corrosion resistance is emphasised. Basic studies and industrial status of austenitic nitrocarburising treatments are also reviewed, which highlight the importance of substrate strengthening for high load bearing applications of anti-scuff thermochemical treatments.

  • PDF

MICROSTRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF ELECTRODEPOSITED Zn-Ni ALLOY COATINGS

  • Short, N.R.;Hui, Wen-Hua;Dennis, J.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.281-288
    • /
    • 1999
  • Electrodeposited Zn-Ni alloy coatings are of particular interest for improving the corrosion resistance of steel in a number of enviornments. Of particular interest is the relationship between composition, structure and corrosion rate. This paper firstly reviews the literature regarding composition-structure relationships of Zn-Ni electrodeposits and compares them with the equilibrium phase diagram. Secondly, research was carried out on a wide range of coatings which were produced in the laboratory and their structure and corrosion rates determined. It was found that unambiguous identification of phases from XRD data can be difficult. Maximum corrosion resistance of deposits is obtained at 12-13% Ni, with a $\gamma$ phase structure and predomination of (600) and (411) reflections. Compatibility is important with regard to chromate conversion coatings.

  • PDF

Molecular Dynamic Simulation of Nano Indentation and Phase Transformation (분자동역학을 이용한 나노 인덴테이션과 상변화 해석 연구)

  • 김동언;손영기;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.339-346
    • /
    • 2003
  • Molecular dynamic simulations of nano indentation on single-crystal silicon (100) surface were performed using diamond indentor. Silicon substrate and diamond indentor were modeled diamond structure with Tersoff potential model. Phase transformation of silicon, incipient plastic deformation, change of incident temperature distribution are investigated through the change of potential energy distribution, displacement-load diagram, the change of kinetic energy distribution and displacements of silicon atoms. Phase transformation is highly localized and consists of a high-density region surrounding the tip. Axial load linearly increased according to the indenting depth. Number of atoms with high kinetic energy increased at the interface between substrate and indentor tip.

  • PDF

The Oscillating Characteristics of Quartz Crystal Coated with Sensitive LB Films (감응성 LB막이 누적된 수정진동자의 발진특성)

  • Kang, Hyen-Wook;Jin, Chul-Nam;Kim, Jung-Myoung;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1522-1524
    • /
    • 1997
  • In this paper, we measured the impedence |Z| and phase angle $\theta$ using the Impedence Analyzer (Hp 4192A). When frequency is varied to produce resonance, the curves(admittance diagram) are obtained. The resonant frequency is obtained also. We analyzed the operating characteristics of quartz crystal coated with sensitive LB films. That is the size of circle in the admittance diagram is decreased as to coat sensitive LB films on the quartz crystal. The resonant frequency and resistance is changed with coating on the surface.

  • PDF

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

NEW CLASSIFICATION TECHNIQUES FOR POLARIMETRIC SAR IMAGES AND ASSOCIATED THREE-COMPONENT DECOMPOSITION TECHNIQUE

  • Oh, Yi-Sok;Chang, Geba;Lee, Kyung-Yup
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • In this paper, we propose one unsupervised classification technique using the degree of polarization (DoP) and the co-polarized phase-difference (CPD) statistics, instead of the entropy and alpha. It is shown that the DoP is closely related to the entropy, and the CPD to the alpha. The DoP explains the feature how much the effect of multiple reflections is contained. Hence, the DoP could be used as an important factor for classifying classes. The CPD can also be computed from the measured Mueller matrix elements. For the smooth surface scattering, the CPD is about $0^{\circ}$, and for dihedral-type scattering, the CPD is about $180^{\circ}$. A DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification results are compared with the existing Entropy-alpha diagram as well as the IPL-AirSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest. Based on the DoP and CPD analysis, a simple three-component decomposition technique was also proposed.

  • PDF

Removal of Cu and Fe Impurities on Silicon Wafers from Cleaning Solutions (세정액에 따른 실리콘 웨이퍼의 Cu 및 Fe 불순물 제거)

  • Kim, In-Jung;Bae, So-Ik
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.80-84
    • /
    • 2006
  • The removal efficiency of Cu and Fe contaminants on the silicon wafer surface was examined to investigate the effect of cleaning solutions on the behavior of metallic impurities. Silicon wafers were intentionally contaminated with Cu and Fe solutions by spin coating and cleaned in different types of cleaning solutions based on $NH_4OH/H_2O_2/H_2O\;(SC1),\;H_2O_2/HCl/H_2O$ (SC2), and/or HCl/$H_2O$ (m-SC2) mixtures. The concentration of metallic contaminants on the silicon wafer surface before and after cleaning was analyzed by vapor phase decomposition/inductively coupled plasma-mass spectrometry (VPD/ICP-MS). Cu ions were effectively removed both in alkali (SC1) and in acid (SC2) based solutions. When $H_2O_2$ was not added to SC2 solution like m-SC2, the removal efficiency of Cu impurities was decreased drastically. The efficiency of Cu ions in SC1 was not changed by increasing cleaning temperature. Fe ions were soluble only in acid solution like SC2 or m-SC2 solution. The removal efficiencies of Fe ions in acid solutions were enhanced by increasing cleaning temperature. It is found that the behavior of metallic contaminants as Cu and Fe from silicon surfaces in cleaning solutions could be explained in terms of Pourbaix diagram.

High Temperature Gas Nitriding of Fe-20Mn-12Cr-1Cu Damping Alloy (Fe-20Mn-12Cr-1Cu 제진합금의 고온가스 질화처리)

  • Sung, Jee-Hyun;Kim, Yeong-Hee;Sung, Jang-Hyun;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • The microstructural changes of Fe-20Mn-12Cr-1Cu alloy have been studied during high temperature gas nitriding (HTGN) at the range of $1000^{\circ}C{\sim}1150^{\circ}C$ in an atmosphere of nitrogen gas. The mixed microstructure of austenite and ${\varepsilon}$-martensite of as-received alloy was changed to austenite single phase after HTGN treatment at the nitrogen-permeated surface layer, however the interior region that was not affected nitrogen permeation remained the structure of austenite and ${\varepsilon}$-martensite. With raising the HTGN treatment temperature, the concentration and permeation depth of nitrogen, which is known as the austenite stabilizing element, were increased. Accordingly, the depth of austenite single phase region was increased. The outmost surface of HTGN treated alloy at $1000^{\circ}C$ appeared Cr nitride. And this was in good agreement with the thermodynamically calculated phase diagram. The grain growth was delayed after HTGN treatment temperature ranges of $1000^{\circ}C{\sim}1100^{\circ}C$ due to the grain boundary precipitates. For the HTGN treatment temperature of $1150^{\circ}C$, the fine grain region was shown at the near surface due to the grain boundary precipitates, however, owing to the depletion of grain boundary precipitates, coarse grain was appeared at the depth far from the surface. This depletion may come from the strong affinity between nitrogen and substitutional element of Al and Ti leading the diffusion of these elements from interior to surface. Because of the nitrogen dissolution at the nitrogen-permeated surface layer by HTGN treatment, the surface hardness was increased above 150 Hv compared to the interior region that was consisted with the mixed microstructure of austenite and ${\varepsilon}$-martensite.