• Title/Summary/Keyword: Surface modification

Search Result 1,910, Processing Time 0.032 seconds

A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds (조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템)

  • Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF

Preparation of Functional Antibiotic and Deodorization Pigments Using Surface Modification Method for Special Papermaking

  • Cho, Jun-Hyung;Lee, Yong-Won;Min, Dong-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.417-421
    • /
    • 2006
  • In this study, colloidal Ag solution was spouted on the surface of the inorganic pigment using the hybridizer system and the spray nozzle. Then, the surface of the inorganic pigment was modified by titanium dioxide in order to possess antibacterial ability. Nano-sized colloidal Ag was made by using a seed sol method in this study. It was confirmed that the size of particle per unit weight becomes enlarged, as the addition of $AgNO_{3}$ increased, and as the time of reaction increased, in the manufacturing process of nano-sized colloidal Ag. The antibacterial measurement of the inorganic pigment showed that the growth of fungus was reduced as the reaction time increased. It was measured that the antibacterial activity was excellent at fixed time frame, after the antibacterial ability appeared in $5{\sim}7$ hours of the antibacterial inoculation experiment. The experiment of titanium dioxide's Photocatalyst effect showed $60{\sim}70%$ efficiency in about 80 minute reaction time of the dissolution results regarding measurements of benzene. It was shown that more than 90% of the dissolution efficiency was achieved in the reaction time of about 30 minute.

  • PDF

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

Surface Characterization of Hydrophobically Modified MCC Using Inverse Gas Chromatography (인버스 가스 크로마토 그래피를 이용한 소수화된 MCC의 표면 특성 분석)

  • Lee, Hak-Rae;Lee, Yong-Min;Park, Il;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • The adsorption characteristics and surface energetics of hydrophobically modified MCC have been investigated by the inverse gas chromatography technique at infinite dilution. The thermodynamic parameters of adsorption, ΔG, ΔH and ΔS, for n-alkanes were determined at infinite dilution. Heats of adsoption of the n-alkanes increased as the level of hydrophobic modification increased. The hydrophobically modified MCC also showed greater entropy of adsorption indicating restricted mobility of the adsorbed n-alkanes. The acid/base characteristics of the MCC were evaluated using polar probes. As the hydrophobicity of MCC increased, the basisity of the MCC decreased.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Surface energy modification of SiOxCyHz film using low temperature PECVD by controlling the plasma process for HMDS precursor with hydrogen gas (수소 기체와 HMDS 프리커서의 저온 PECVD공정을 통한 실리콘옥사이드 박막의 표면에너지 개질)

  • Lee, Jun-Seok;Jin, Su-Bong;Choe, Yun-Seok;Choe, In-Sik;Han, Jeon-Geon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.165-166
    • /
    • 2012
  • 표면의 젖음성은 어플리케이션의 매우 중요한 점으로, 이것은 표면에너지와 표면의 조도에 의해 결정된다. 표면의 젖음성을 낮추기 위하여 저온 PECVD 공정을 통해 초소수성 박막을 만들었다. $SiO_xC_yH_z$ 필름을 만들기 위하여 RF power을 사용하였고, HMDS (hexamethyl-disilazane) precursor과 함께 수소 기체를 통해 증착하였다. 이 실험에서는 수소와 RF power를 변수로 진행하였고, 이것은 소수성 박막의 표면에너지를 변화시켰다. 필름을 합성한 후 contact angle measurement 및 AFM을 사용해 표면에너지와 표면조도를 관찰하였다. 또한 필름의 화학적 결합을 알기 위해 FT-IR을 이용하였다. 여기에서 표면의 에너지는 표면의 조도와 화학적 결합상태에 의해서 영향을 받았음을 알 수 있었다.

  • PDF

Surface Modification of Mica Using TiO$_2$ prepared by Alkoxide Hydrolysis Method (알콕사이드 가수분해법에 의핸 제조된 TiO$_2$ 분말을 이용한 Micad의 표면 개질)

  • 한상필;윤영훈;이상훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.691-697
    • /
    • 1999
  • TiO2 powder was adsorbed on the surface of mica using the heterocoagulation method in water TiO2 powder was prepared from hydrolysis of titanium-iso propoxide in a mixed solvent of anhydrous ethanol and water. When the molar ratio of water to titanium iso-propoxide was 0.25 monodispersed spherical TiO2 particles were obtained. The prepared TiO2 powder showed anatase phase after heat treatment at 50$0^{\circ}C$ for 2 h and then transformed to rutile phase after heat treatment at 100$0^{\circ}C$ for 2h. The iso-electric points of TiO2 and Mica were pH 3.9 and pH 3.25 respectively which were measured by the Z-potential analysis in water base. The maximum Z-potential difference between two powders was observed in the range of pH 3.6~3.7 TiO2 powder was adsorbed on the surface of mica by heterocoagulation method in pH 3.6~3,7 The properties of prepared TiO2 powder was haracterized by TG-DTA, XRD and SEM The morphology and thermal properties of TiO2-adsorbed mica were examined.

  • PDF

Preparation of Insulin-Immobilized Polyurethane Films and Their Interaction with Fibroblasts (인슐린을 고정화한 폴리우레탄 막의 제조 및 섬유아세포와의 상호작용)

  • 맹만;김우식;이동호;박이순;강인규
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.538-544
    • /
    • 2004
  • Polyurethanes containing L-lysine segments in the main chain (PULL) were synthesized from 4,4'-diphenymethyl diisocynate, poly(tetramethylene glycol), and z-lysine oligomer as a chain extender. Insulin-immobilized polyurethanes (PULL-In) were prepared by a coupling reaction of PULL surface amino groups with insulins. The amount of immobilized insulin was about 0.30 nmol/$\textrm{cm}^2$, as determined by Bradford method. The interactions of NIH/3T3 fibroblasts with surface-modified PULLs were investigated using $^3$H-thymidine incoporation and optical microscopy. The cell growth rate on PULL-In film was higher than those on other substrates. The cell proliferation by the immobilized insulin was almost same as that by the free one.

Highly-sensitive Detection of Salvianolic Acid B using Alumina Microfibers-modified Electrode

  • Sun, Dong;Zheng, Xiaoyong;Xie, Xiafeng;Yang, Xiaofeng;Zhang, Huajie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3357-3361
    • /
    • 2013
  • Alumina microfibers with porous structures were prepared through hydrothermal reaction, and then used to modify the surface of carbon paste electrode (CPE). After modification with alumina microfibers, the electrochemical activity of CPE was found to be greatly improved. On the surface of alumina microfibers-modified CPE, the oxidation peak current of salvianolic acid B, a main bioactive compound in Danshen with anti-oxidative and anti-inflammatory effects, was remarkably increased compared with that on the bare CPE surface. The influences of pH value, amount of alumina microfibers and accumulation time were studied. Based on the strong signal amplification effects of alumina microfibers, a novel electrochemical method was developed for the detection of salvianolic acid B. The linear range was from 5 ${\mu}gL^{-1}$ to 0.3 mg $L^{-1}$, and the detection limit was 2 ${\mu}gL^{-1}$ (2.78 nM) after 1-min accumulation. The new method was successfully used to detect salvianolic acid B in ShuangDan oral liquid samples, and the recovery was over the range from 97.4% to 102.9%.

EFFECT OF SOLUBLE ADDITIVES, BORIC ACID (H3BO3) AND SALT (NaCl), IN POOL BOILING HEAT TRANSFER

  • Kwark, Sang-M.;Amaya, Miguel;Moon, Hye-Jin;You, Seung-M.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • The effects on pool boiling heat transfer of aqueous solutions of boric acid ($H_3BO_3$) and sodium chloride (NaCl) as working fluids have been studied. Borated and NaCl water were prepared by dissolving 0.5~5% volume concentration of boric acid and NaCl in distilled-deionized water. The pool boiling tests were conducted using $1{\times}1\;cm^2$ flat heaters at 1 atm. The critical heat flux (CHF) dramatically increased compared to boiling pure water. At the end of boiling tests it was observed that particles of boric acid and NaCl had deposited and formed a coating on the heater surface. The CHF enhancement and surface modification during boiling tests were very similar to those obtained from boiling with nanofluids. Additional experiments were carried out to investigate the reliability of the additives deposition in pure water. The boric acid and NaCl coatings disappeared after repeated boiling tests on the same surface due to the soluble nature of the coatings, thus CHF enhancement no longer existed. These results demonstrate that not only insoluble nanoparticles but also soluble salts can be deposited during boiling process and the deposited layer is solely responsible for significant CHF enhancement.