• Title/Summary/Keyword: Surface mapping

Search Result 500, Processing Time 0.038 seconds

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

Comparison of various image fusion methods for impervious surface classification from VNREDSat-1

  • Luu, Hung V.;Pham, Manh V.;Man, Chuc D.;Bui, Hung Q.;Nguyen, Thanh T.N.
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Impervious surfaces are important indicators for urban development monitoring. Accurate mapping of urban impervious surfaces with observational satellites, such as VNREDSat-1, remains challenging due to the spectral diversity not captured by an individual PAN image. In this article, five multi-resolution image fusion techniques were compared for the task of classifting urban impervious surfaces. The result shows that for VNREDSat-1 dataset, UNB and Wavelet tranformation methods are the best techniques in reserving spatial and spectral information of original MS image, respectively. However, the UNB technique gives the best results when it comes to impervious surface classification, especially in the case of shadow areas included in non-impervious surface group.

A Constitutive Model using Anisotropic Bounding Surface Theory for Cohesive Soils (이방성 항복경계면 이론을 이용한 점성토정회원, 서울대학교 공과대학 토목공학과 조교수의 구성모델)

  • 김범상;정충기
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 1996
  • In this study, a constitutive model which can describe the anisotropic and plastic behaviors of natural cohesive soils, was developed based on anisotropic bounding surface theory. The model was fomulated by the concepts of the improved anisotropic bounding surface function, nonassociated flow rule with new plastic potential function, anisotropic hardening rule, and new mapping rule governing the plastic behavior inside bounding sutraface. Comparing with the results of Ku consolidation and triaxial shearing tests, the predictions by the proposed model agree quite well with real soil responses.

  • PDF

Structural characterization of aluminum oxide precipitation formed on the surface of nickel-carbon film (니켈/탄소 복합체 박막 표면에 형성된 알루미늄 산화물의 구조 분석)

  • Lee, Min-Hui;Na, Hyeon-Ung;Choe, Han-Sin;Kim, Gyu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.174-175
    • /
    • 2014
  • We fabricated a Ni/C composite thick film on ${\alpha}-Al_2O_3$ substrate. A number of precipitations were observed on the film surface. Structural characterization was performed on the observed precipitations using transmission electron microscopy (TEM) with help of the elemental mapping, electron diffraction (ED) and ED simulation. The structural characterization revealed that the precipitation is ${\theta}-Al_2O_3$ having the space group of C2/m (Monoclinic).

  • PDF

Wave Phase Shift of a Submerged Circular Cylinder

  • Hang-Shoon,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 1980
  • Herein the flow past a submerged circular cylinder with a free surface is mapped onto a reference plane, in which the free surface is transformed to a straight line and the cylinder to a certain shape. A global mapping function between two planes is sought in a manner that linear free-surface elevation is generated in the physical plane. Hereby the Froude mumber $F_h$, based on the submergence depth h', is assumed to be of order 0(1) and the ratio a'/h'(a'=cylinder radius) of order o(1). Wave thus obtained are slightly different in magnitude and phase from usual linear solution. The resulting free wave starts advanced ahead compared to the classical result and its amount depends on Froude number. Based on the present concept wave forces are calculated. In this type of approach the body boundary condition gives more influence on wave resistance than that by the free surface in the speed range $F_h>1$.

  • PDF

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

Mapping Technique for Flood Vulnerable Area Using Surface Runoff Mechanism (지표유출메커니즘을 활용한 홍수취약지구 표출 기법)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KIM, Hyun-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.181-196
    • /
    • 2019
  • Floods can be caused by a variety of factors, and the main cause of floods is the exceeding of urban drainage system or river capacity. In addition, rainfall frequently occurs that causes large watershed runoff. Since the existing methodology of preparing for flood risk map is based on hydraulic and hydrological modeling, it is difficult to analyse for a large area because it takes a long time due to the extensive data collection and complex analysis process. In order to overcome this problem, this study proposes a methodology of mapping for flood vulnerable area that considered the surface runoff mechanism. This makes it possible to reduce the time and effort required to estimate flood vulnerabilities and enable detailed analysis of large areas. The target area is Seoul, and it was confirmed that flood damage is likely to occur near selected vulnerable areas by verifying using 2×2 confusion matrix and ROC curve. By selecting and prioritizing flood vulnerable areas through the surface runoff mechanism proposed in this study, the establishment of systematic disaster prevention measures and efficient budget allocation will be possible.

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

Analysis of Road Surface Irregularity and Superelevation Using Mobile Mapping System (Mobile Mapping System을 이용한 도로 평탄성과 편경사 분석 연구)

  • KIM, Gi-Chang;YOON, Ha-Su;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.155-166
    • /
    • 2019
  • Road infrastructure has increased explosively due to economic development after industrialization and at present road infrastructure is being changed and increased by construction of new roads and maintenance and expansion of existing roads. Such road infrastructure should support safe driving. Road management plays an important role in safe driving. The purpose of this dissertation is to verify predictability of dangerous sections by analyzing road geometrical structure such as surface irregularity and superelevation for some sections in Central Inland Expressway by MMS and present ways of managing roads using MMS. Having analyzed surface irregularity of roads by using MMS, it was found that over 50 percent of all eight sections, targets of this study need betterments and for superelevation, over 50 percent of two sections goes against superelevation standard. Targets of this study are sections that accidents occurred frequently based on history of past accidents and predictability of dangerous sections can be verified through analysis of road geometrical structure using MMS. Using MMS data created by construction of high definition maps which are being undergone for all roads and methods proposed by this study will help investigate dangerous sections efficiently according to road environment. A result of MMS can be used for maintenance of road furniture.

Development of Frost Thickness Measurement Method Using Optical Technique (광학적 기법에 의한 Frost 두께 측정방법의 개발)

  • Jeong, Jae-Hong;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.654-659
    • /
    • 2001
  • A new non-contact method of the frost thickness measurement has been developed. The method is based on the digital image processing technique to identify the reflection edge of the image captured by a CCD camera under laser sheet light illumination. To insure the accuracy of frost layer thickness, an in-situ calibration procedure is carried out with a calibration target with 0.5mm holes. Using the mapping function obtained by the calibration procedure, the contour of frost surface can be estimated with sub-pixel resolutions. The developed method is applied to study the effect of cooling plate temperature on the frost thickness in a small low speed wind tunnel.

  • PDF