• Title/Summary/Keyword: Surface landmarks

Search Result 39, Processing Time 0.027 seconds

The Inaccuracy of Surface Landmarks for the Anterior Approach to the Cervical Spine in Southern Chinese Patients

  • Ko, Tin Sui;Tse, Michael Siu Hei;Wong, Kam Kwong;Wong, Wing Cheung
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1123-1126
    • /
    • 2018
  • Study Design: Observational study. Purpose: To assess the correlational accuracy between the traditional anatomic landmarks of the neck and their corresponding vertebral levels in Southern Chinese patients. Overview of Literature: Recent studies have demonstrated discrepancies between traditional anatomic landmarks of the neck and their corresponding cervical vertebra. Methods: The center of the body of the hyoid bone, the upper limit of the lamina of the thyroid cartilage, and the lower limit of the cricoid cartilage were selected as representative surface landmarks for this investigation. The corresponding vertebral levels in 78 patients were assessed using computed tomography. Results: In both male and female patients, almost none of the anatomical landmarks demonstrated greater than 50% correlation with any vertebral level. The most commonly corresponding vertebra of the hyoid bone, the lamina of the thyroid cartilage, and the cricoid cartilage were the C4 (47.5%), C5 (35.9%), and C7 (42.3%), respectively, which were all different from the classic descriptions in textbooks. The vertebral levels corresponding with the thyroid and cricoid cartilage were significantly different between genders. Conclusions: The surface landmarks of the neck were not accurate enough to be used as the sole determinant of vertebral levels or incision sites. Intra-operative fluoroscopy is necessary to accurately locate each of the cervical vertebral levels.

A method for mandibular dental arch superimposition using 3D cone beam CT and orthodontic 3D digital model

  • Park, Tae-Joon;Lee, Sang-Hyun;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.42 no.4
    • /
    • pp.169-181
    • /
    • 2012
  • Objective: The purpose of this study was to develop superimposition method on the lower arch using 3-dimensional (3D) cone beam computed tomography (CBCT) images and orthodontic 3D digital modeling. Methods: Integrated 3D CBCT images were acquired by substituting the dental portion of 3D CBCT images with precise dental images of an orthodontic 3D digital model. Images were acquired before and after treatment. For the superimposition, 2 superimposition methods were designed. Surface superimposition was based on the basal bone structure of the mandible by surface-to-surface matching (best-fit method). Plane superimposition was based on anatomical structures (mental and lingual foramen). For the evaluation, 10 landmarks including teeth and anatomic structures were assigned, and 30 times of superimpositions and measurements were performed to determine the more reproducible and reliable method. Results: All landmarks demonstrated that the surface superimposition method produced relatively more consistent coordinate values. The mean distances of measured landmarks values from the means were statistically significantly lower with the surface superimpositions method. Conclusions: Between the 2 superimposition methods designed for the evaluation of 3D changes in the lower arch, surface superimposition was the simpler, more reproducible, reliable method.

3-Dimensional Dental Surgery System based on PC using anatomical landmarks (해부학적 계측점을 이용한 PC-기반3차원 치과수술 시스템)

  • 이경상;유선국;김형돈;배현수;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.139-148
    • /
    • 1999
  • In this paper, we designed the dental surgery system based on PC. This system predict post operated 3-dimensional image, So the patient has no need to take CT after surgery and expose his body to radiological damage. We predict the post operated skull from the patient's CT with pre and post cephalometry X-ray. Our novel procedures, to register X-ray and CT, are based on anatomical landmarks, singular value decomposition. And we display the predicted image 3-dimensionally by surface rendering. We verified this system by dry skull experiment and clinical experiment. When significance level is 0.05, there is on significance.

  • PDF

Automatic Extraction of Stable Visual Landmarks for a Mobile Robot under Uncertainty (이동로봇의 불확실성을 고려한 안정한 시각 랜드마크의 자동 추출)

  • Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.758-765
    • /
    • 2001
  • This paper proposes a method to automatically extract stable visual landmarks from sensory data. Given a 2D occupancy map, a mobile robot first extracts vertical line features which are distinct and on vertical planar surfaces, because they are expected to be observed reliably from various viewpoints. Since the feature information such as position and length includes uncertainty due to errors of vision and motion, the robot then reduces the uncertainty by matching the planar surface containing the features to the map. As a result, the robot obtains modeled stable visual landmarks from extracted features. This extraction process is performed on-line to adapt to an actual changes of lighting and scene depending on the robot’s view. Experimental results in various real scenes show the validity of the proposed method.

  • PDF

Analysis of Body Surface Area by Fitness Motion Using 3D Scan Data of Korean Elderly Female (한국 여성 노인 3D 스캔 데이터를 활용한 피트니스 동작별 체표면적 분석)

  • Jeon, Eun-Jin;Jung, Ha-young;Kim, Hee-Eun;You, Hee-Cheon
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.650-659
    • /
    • 2020
  • The present study provides reference data required for the design of clothing for the elderly by analyzing the body surface area during fitness motion based on 3D scan data of Korean elderly women. This study was conducted with the procedures of (1) survey of motions and main muscles for fitness, (2) acquisition of 3D scan data, and (3) analysis of rate of change for body surface area during fitness motion. Acquisition of 3D body scan data was obtained from seven elderly females (age: 64-77). We selected 66 anatomical landmarks (40 upper body and 22 lower body) by referring to previous studies. Body surface was segmented by connecting the landmarks marked on the 3D scan data acquired. Analysis of body surface area was conducted in terms of the change rate of surface area in 9 postures of elbow 0°, 90° and 180° for flexion, shoulder 90°, 180° for flexion, shoulder 0°, 180° for abduction, hip 90° for flexion, and knee 90° for flexion compared to the those in the standing posture. The amount of changes in body surface area were 12%-62% in the upper body, 15%-77% in the arm, and 10%-51% in the lower body. A future study on the rate of change of body surface length is needed; in addition, a study on how to apply the results of body surface area and body surface length analysis to clothing pattern design is also necessary.

Development of Localization and Pose Compensation for Mobile Robot using Magnetic Landmarks (마그네틱 랜드마크를 이용한 모바일 로봇의 위치 인식 및 위치 보정 기술의 개발)

  • Kim, Bum-Soo;Choi, Byung-June;You, Won-Suk;Moon, Hyung-Pil;Koo, Ja-Choon;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.186-196
    • /
    • 2010
  • In this paper, we present a global localization and position error compensation method in a known indoor environment using magnet hall sensors. In previous our researches, it was possible to compensate the pose errors of $x_e$, $y_e$, ${\theta}_e$ correctly on the surface of indoor environment with magnets sets by regularly arrange the magnets sets of identical pattern. To improve the proposed method, new strategy that can realize the global localization by changing arrangement of magnet pole is presented in this paper. Total six patterns of the magnets set form the unique landmarks. Therefore, the virtual map can be built by using the six landmarks randomly. The robots search a pattern of magnets set by rotating, and obtain the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. We provide experimental results to show the effectiveness of the proposed method for a differential drive wheeled mobile robot.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Reproducibility of the sella turcica landmark in three dimensions using a sella turcica-specific reference system

  • Pittayapat, Pisha;Jacobs, Reinhilde;Odri, Guillaume A.;Vasconcelos, Karla De Faria;Willems, Guy;Olszewski, Raphael
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • Purpose: This study was performed to assess the reproducibility of identifying the sella turcica landmark in a three-dimensional (3D) model by using a new sella-specific landmark reference system. Materials and Methods: Thirty-two cone-beam computed tomographic scans (3D Accuitomo$^{(R)}$ 170, J. Morita, Kyoto, Japan) were retrospectively collected. The 3D data were exported into the Digital Imaging and Communications in Medicine standard and then imported into the Maxilim$^{(R)}$ software (Medicim NV, Sint-Niklaas, Belgium) to create 3D surface models. Five observers identified four osseous landmarks in order to create the reference frame and then identified two sella landmarks. The x, y, and z coordinates of each landmark were exported. The observations were repeated after four weeks. Statistical analysis was performed using the multiple paired t-test with Bonferroni correction (intraobserver precision: p<0.005, interobserver precision: p<0.0011). Results: The intraobserver mean precision of all landmarks was <1 mm. Significant differences were found when comparing the intraobserver precision of each observer (p<0.005). For the sella landmarks, the intraobserver mean precision ranged from $0.43{\pm}0.34mm$ to $0.51{\pm}0.46mm$. The intraobserver reproducibility was generally good. The overall interobserver mean precision was <1 mm. Significant differences between each pair of observers for all anatomical landmarks were found (p<0.0011). The interobserver reproducibility of sella landmarks was good, with >50% precision in locating the landmark within 1 mm. Conclusion: A newly developed reference system offers high precision and reproducibility for sella turcica identification in a 3D model without being based on two-dimensional images derived from 3D data.

The Geometric Averaging Technique for Long Bone (긴뼈의 형상 평균화 기법)

  • Kwak Dai-Soon;Lee U-Young;Han Seung-Ho;Choi Kwang-Nam;Kim Tae-Joong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.177-178
    • /
    • 2006
  • Many authors issued the feature-preserving averaging technique according to positioning and scaling process using landmarks, which represent the geometric characteristics of three dimensional surface models. Such a technique should be done by manual procedure, choosing and marking the landmarks on each bone surface before averaging process. In this study, we produced another averaging technique without having to use such manual procedure, and made averaging models from three dimensional surface data that were reconstructed from computerized tomography images of Digital Korean Project. The bone models were subjected to orthogonal coordinator system. These models were transformed to coincide mass center and to align principal axis. Then, bone models were scaled according to average length data of sample bone models on all axis(x, y, z). After establishing voxellar hexahedron space which contain all sample bone models, we counted the number of overlapping for each voxel. We generated the three dimensional average surface by displaying the yokels that have more overlapping number than boundary number. The boundary number was decided when the average volume of each bone equal to the volume of bone that would be averaged. Using this technique, we can make a feature-preserving averaging volume of bones.

  • PDF

The Morphometric Study for the Rolandic Fissure

  • Choi, Jin-Gu;Bae, Hack-Gun;Sim, Jae-Jun;Park, Heung-Ki;Sim, Ki-Bum;Choi, Soon-Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • Objective : The purpose of this study was to characterize the Rolandic fissure[Rf] and was to identify the Rf using the surface bony landmarks which can be usually exposed on craniotomy. Methods : After morphological evaluation of the Rfs using 21 Korean adult formalin fixed cadavers, craniometric measurement was carried out from the surface bony landmarks of nasion, glabella, bregma, and lambda. Results : The Rfs of both hemispheres did not show the mirror image. The Rfs ran forward and downward toward the sylvian fissure keeping the mean angle of $67^{\circ}$ from mid-sagittal line as elongated S-shape in left and the elongated reverse S-shape in right hemisphere. Connections between the Rf and the longitudinal fissure and between the Rf and the sylvian fissure were found in 3 [7.1%] and 2 [4.8%] of 42 hemispheres, respectively. Most Rfs extended superiorly to 2-3mm lateral to the most superomedial surface of hemispheres and extended inferiorly to 3-5mm superior to the sylvian fissures. The mean distances from the nasion, glabella, bregma, and lambda to the most superomedial aspect of the Rf were $18.8{\pm}0.9cm,\;16.6{\pm}0.8cm,\;5.2{\pm}0.6cm$, and $6.9{\pm}1.0cm$, respectively. The mean distance measured between the Rf and the nasion using traditional method was $18.4{\pm}0.6cm$. Conclusion : The distance between the Rf and the nasion roughly correspond within the range of mean 4 mm compared with that measured by the traditional measurement. These data may be more helpful to delineate the Rf after the placement of drapes for craniotomy.