• 제목/요약/키워드: Surface inclination

검색결과 275건 처리시간 0.029초

$4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성 (The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$)

  • 황영규;장명륜
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

경사 돌기 표면의 젖음 특성 평가 (Hydrophobicity Evaluation of Oblique Micro-asperities Structures)

  • 백승익;김태완
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.56-60
    • /
    • 2023
  • In this study, we evaluate the anisotropic flow of droplets according to the directionality of asperities. We manufacture a mold with an inclined hole by adjusting the jig angle using a high-power diode laser. Using the manufactured mold, we prepare specimens for wettability studies by the micro molding technique. We fabricate twelve kinds of surfaces with micro-asperities inclined at 0°, 15°, 30°, and 45° for asperity pitches of 100 ㎛, 200 ㎛, and 300 ㎛. We evaluate the static and dynamic behaviors of the droplets as a function of the asperities pitch and inclination angles. The anisotropic effect increases as the pitch increases between asperities, and the anisotropic flow characteristics increase as the inclination angle of the asperities increases. On the surface with hole pitches of 100 ㎛ and 200 ㎛, the contact angle of the droplet shows high hydrophobicity at approximately 160°, but on the surface with the 300-㎛ hole pitch, the contact angle is approximately 110°, indicating that the hydrophobic effect rapidly reduces. Additionally, when the inclination angle of the asperities is approximately 30°, the left and right contact angle deviations of the droplet are the lowest, showing that the roll-off angle is relatively low.

Possible Causes of Paleosecular Variation and Deflection of Geomagnetic Directions Recorded by Lava Flows on the Island of Hawaii

  • Czango Baag
    • IUGG한국위원회:학술대회논문집
    • /
    • IUGG한국위원회 2003년도 정기총회 및 학술발표회
    • /
    • pp.20-20
    • /
    • 2003
  • In the summers of 1997 and 1998 and in February of 2000 we made 570 measurements of the ambient geomagnetic field 120 cm above the pavement surface of State Route 130, south of Pahoa, the island of Hawaii using a three-component fluxgate magnetometer. We measured at every 15.2 m (50 feet) interval covering a distance of 6, 310 m (20, 704 ft) where both historic and pre-historic highly magnetic basalt flows underlie. We also collected 197 core samples from eight road cuts, 489 specimens of which were subject to AF demagnetizations at 5 - 10 mT level up to a maximum field of 60 mT. We observed significant inclination anomalies ranging from a minimum of $31^{\circ}$ to a maximum $40^{\circ}$ where a uniform inclination value of $36.7^{\circ}$ (International Geomagnetic Reference Field, IGRF) was expected. Since the mean of the observed inclinations is approximately $35^{\circ}$ we assume that the study area is slightly affected by the magnetic terrain effect to a systematically shallower inclinations for being located in the regionally sloping surface of the southern side of the island (Baag, et al., 1995). We observed inclination anomalies showing wider (spacial) wavelength (160 - 600 m) and higher amplitudes in the historic lava flows area than in the northern pre-historic flows. Our observations imply that preexisting inclination anomalies such as those that we observed would have been interpreted as paleosecular variation (PSV). These inclination anomalies can best be attributed to concealed underground highly magnetic dikes, channel type lava flows, on-and-off hydrothermal activities through fissure-like openings, etc. Both the within- and between-site dispersions of natural remanent magnetization (NRM) are largest (up to ${\pm}7^{\circ}$) above the flows of 1955, while the area of pre-historic flows in the northern part of the study area exhibit the smallest dispersion. Nevertheless, mean inclinations of each historic flow of 1955 and 1790 are almost identical to that of the corresponding present field, whereas mean of NRM (after AF demagnetization) inclinations for each of the four pre-historic lava flow units is twelve to thirteen degrees lower than the present field inclination. We observed three cases of very large inclination variations from within a single flow, the best fitting curves of which are linear, second and third order polynomials each from within a single flow, whereas no present field variations are observed. This phenomena can be attributed to the notion that local magnetic anomalies on the surface of an active volcano are not permanent, but are transient. Therefore we believe that local magnetic anomalies of an active volcano may be constantly modified due to on going subsurface injections and circulations of hot material and also due to wide spacial and temporal distribution of highly magnetic basaltic flows that will constantly modify the topography which will in turn modify the local ambient geomagnetic field (Baag, et al., 1995). Our observations bring into question the general reliability of PSV data inferred from volcanic rocks, because on-going various geologic and geophysical activities associated with active volcano would continuously deflect and modify the ambient geomagnetic field.

  • PDF

Reinforcement 학습을 이용한 두발 로보트의 보행 자세 교정 (Gait synthesis of a biped robot using reinforcement learning)

  • 이건영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1228-1230
    • /
    • 1996
  • A neural network(NN) mechanism is proposed to modify the gait of a biped robot that walks on sloping surface using sensory inputs. The robot starts walking on a surface with no priori knowledge of the inclination of the surface. By accumulating experience during walking, the robot improves its walking gait and finally forms a gait that is adapted to the surface inclination. A neural controller is proposed to control the gait which has 72 reciprocally inhibited and excited neurons. PI control is used for position control, and the neurons are trained by a reinforcement learning mechanism. Experiments of static gait learning and pseudo dynamic learning are performed to show the validity of the proposed reinforcement learning mechanism.

  • PDF

경지 균평 작업을 위한 자동 표고 측정에 관한 연구 (A Study on the Automatic Level Measurement for Land Leveling)

  • 김종안;김수현;곽윤근
    • Journal of Biosystems Engineering
    • /
    • 제22권3호
    • /
    • pp.269-278
    • /
    • 1997
  • An automatic level measurement system was developed to level the land fer direct seeding of rice. A laser transmitter/receiver set was used to measure land-level. The inclination error occurred in level measurement on irregular land surface could be compensated by attaching rotating mass. The level measuring experiments were performed on three kinds of different shapes(step, random, sine). This system could accurately measure step level of which amplitude was 40mm in 0.5s, random level change within $\pm$ 5mm maximum measurement error, and sine level change of which spatial frequency was 0.5m-1. To verify performance of the inclination error compensation system, frequency transfer function(acceleration input vs. inclination error) was computed by spectral analysis. The inclination error was decreased about 20㏈ by error compensation system.

  • PDF

3차원 경사크랙을 가진 중공축의 응력확대계수산정 (Computation of stress Intensity Factors of Hollow Cylinder with Three Dimension Inclination Cracks)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.21-27
    • /
    • 1999
  • In this study, stress intensity factors KI, KII, KIII are existing at the same time to a hollow cylindrical bar of three dimension inclination crack. In order to investigate by experimentally the effect of the inclination angle $\psi$ of crack, artificial inclination cracks in the circumferential direction are put in the surface of a hollow cylindrical bar made by the epoxy-resin. Experimentally, stress analysis methods of stress intensity factors were proposed. But, suitable method are the caustic method and the photoelastic stress freezing method. The mixed mode of KI, and KII, were determined by the photoelastic method of the classical approach method and the FORTRAN language program of the used smallest square method.

  • PDF

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

IPS Empress 도재관의 파절강도 : 상악 중절치에서 절단연 삭제량과 축면 경사도에 따른 영향 (Fracture strength of the IPS Empress crown :The effect of incisal reduction and axial inclination on upper central incisor)

  • 송병권;이해형;동진근
    • 구강회복응용과학지
    • /
    • 제16권3호
    • /
    • pp.237-245
    • /
    • 2000
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the incisal depth(2.0mm, 2.5mm, 3.0mm) and axial inclination($4^{\circ}$, $8^{\circ}$, $12^{\circ}$) of the upper central incisor. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results were : 1. The fracture strength of the ceramic crown with 2.5mm depth and $8^{\circ}$ inclination was the highest(965N). Crowns of 2.0mm depth and $4^{\circ}$ inclination had the lowest strength(713N). There were no significant differences of the fracture strength by axial inclination in same incisal depth group. 2. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin irrespective of incisal depth. There had correlation between fracture strength and fractured surface area.

  • PDF

경사진 출구면에서 드릴 버 형성에 관한 실험적 고찰 (Experiment Analysis of the Burr Formation on the Inclined Exit Surface in Drilling)

  • 김병권;고성림
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.47-53
    • /
    • 2006
  • An Experiment was carried out to find the scheme far minimization of burr formation on inclined exit surface in drilling. Several drills with different geometry are used for drilling the workpiece with inclined exit surface. Step drills are specified with step angle and step size. The influence of the inclination angle of exit surface on burr formation was observed, which enables to analyze the burr formation mechanism on inclined exit surface. Along the edge on the inclined exit surface, burrs are formed by the bending deflection to feed direction and also burrs are formed in exit direction of cutting edge. To minimize the burr formed in feed direction, the corner angle which is formed by the inclination angle and step angle must be large enough not to be bent to burr. By decreasing step angle of drill and decreasing the distance between two axes of two holes, burr formation at the intersecting holes can be minimized. Burr formation mechanisms are analyzed according to the drill geometries and cutting conditions. Several schemes far burr minimization on inclined exit surface were proposed.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.