• Title/Summary/Keyword: Surface heterogeneity

Search Result 107, Processing Time 0.022 seconds

Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane

  • Park, Sun Hwa;Kim, Ami;An, Jieun;Cho, Hyun Sung;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.529-543
    • /
    • 2020
  • In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+ channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

Sub-grid study of scaling effects to evapotranspiration of heterogeneous forest landscape at the Volga source area in Russia

  • Oltchev, A.;G.Gravenhorst;A.P.Tishenko;Joo, Y.T.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.151-152
    • /
    • 2001
  • A common problem of the model simulations of the land surface - atmosphere interaction is to choose the appropriate spatial scale and resolution at which the simulations are to be performed. The accuracy of energy and water exchange predictions between the land surface and the atmosphere in regional and global scale atmospheric models is mainly influenced by: model simplifications applied to describe the spatial heterogeneity of land surface properties within individual grid cells; ignoring the variability of sub-grid properties (e.g. relief, vegetation, soils), and; lacks of necessary input meteorological and biophysical data.(omitted)

  • PDF

Nephron Heterogeneity of Renin Release in Rat Kidney Slices: Effects of L-Isoproterenol, Angiotensin II and TMB-8

  • Seul, Kyung-Hwan;Kim, Suhn-Hee;Koh, Gou-Young;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • In order to determine possible relationships between the renin-angiotensin system and nephron heterogeneity, we compared the response of renin release and the angiotensin-converting enzyme (ACE) activity from different areas of the rat kidney. We used the renal cortical slices from the capsular surface to the juxtamedullary junction. Slices from outer one-third of the cortex were designated as outer cortical slices (OC), middle one-third as midcortical slices (MC), and inner one-third as inner cortical slices (IC). The renal renin content markedly decreased from OC and MC to IC. The basal lenin release was higher in OC than in MC or IC. On the contrary the percent change of renin release in response to L-isoproterenol was significantly higher in MC than in OC or IC. By TMB-8, the renin release in MC by $231{\pm}21%$ was higher than OC by $171{\pm}19%$ or IC by $$162{\pm}19. Angiotensin II suppressed renin release in OC and MC by $68{\pm}2,\;71{\pm}4%$ respectively, but only $40{\pm}7%$ in IC. The ACE activity was higher in IC than in OC, MC, medulla and papilla. The present data indicate that renin content and basal lenin release gradulally decreased from outer (OC) to inner (IC) cortex. The renin release in response to beta-adrenergic agonist, L-isoproterenol and intracellular calcium antagonist, TMB-8 were higher in MC than in OC and IC, but angiotensin II suppressed renin release less in IC than in OC and MC. It is suggested that juxtaglomerular cells of outer, mid-and inner cortices show a difference in renin release response to the stimuli.

  • PDF

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Application of the Latest Land Use Data for Numerical Simulation of Urban Thermal Environment in the Daegu (최신토지피복자료를 이용한 대구시의 열환경 수치모의)

  • Lee, Hyun-Ju;Lee, Kwi-Ok;Won, Gyeong-Mee;Lee, Hwa-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.196-210
    • /
    • 2009
  • The land surface precesses is very important to predict urban meteorological conditions. Thus, the latest land use data set to reflect the rapid progress in urbanization was applied to simulate urban thermal environment in Daegu. Because use of the U.S geological Survey (USGS) 25-category data, currently in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), does not accurately described the heterogeneity of urban surface, we replaced the land use data in USGS with the latest land-use data of the Korea Ministry of Environment over Daegu. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 5 classes to account for heterogeneity of urban land cover. The new land cover classification (MC-LULC) improved the capability of MM5 to simulate the daytime part of the diurnal temperature cycle in the urban area. The 'MC-LULC' simulation produced the observed temperature field reasonably well, including spatial characteristics. The warm cores in western Daegu is characterized by an industrial area.

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact (비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향)

  • Lee, Doo-Il;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation

  • Cho, Yoori;Lee, Dowon;Bae, SoYeon
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

Sorption of $Pb^{2+}$ Ions on to Activated Carbons Prepared from Olive Stones

  • Attia, Amina. A.;Shouman, Mona. A.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • The carbon sample "O", phosphoric acid-activated carbon "OP", zinc chloride-activated carbon "OZ", and two steam activated carbons "OS" and "OS2" with different burn-off of 25% and 58% respectively, were prepared from olive stones. The textural properties were determined from the results of nitrogen adsorption at 77 K and by analyzing these results through the application of different adsorption models. The chemistry of the carbon surfaces was determined from the base neutralization capacities, acid neutralization capacity and surface pH. The sorption of $Pb^{2+}$ ions on to the carbons prepared was followed under dynamic and equilibrium conditions. The differences between the values of the textural parameters were attributed to the inapplicability of some adsorption models and to the heterogeneity of the microporous carbons. The sorption of $Pb^{2+}$ ions is favored on carbon and activated carbons. However, chemically activated carbons are more effective compared with steam-activated ones. The sorption of $Pb^{2+}$ ions were related to the chemistry of the surface rather than to the textural properties.

  • PDF

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.