• Title/Summary/Keyword: Surface heterogeneity

Search Result 107, Processing Time 0.023 seconds

Genetic heterogeneity of liver cancer stem cells

  • Minjeong Kim;Kwang-Woo Jo;Hyojin Kim;Myoung-Eun Han;Sae-Ock Oh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.94-108
    • /
    • 2023
  • Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.

Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.190-202
    • /
    • 2021
  • Background: Landscape metrics have been widely applied to quantifying the relationship between land surface temperature and urban spatial patterns and have received acceptable verification from landscape ecologists but some studies have shown their inaccurate results. The objective of the study is to compare landscape metrics and texture-based measures as alternative indices in measuring urban heterogeneity effects on LST at multiple scales. Results: The statistical results showed that the correlation between urban landscape heterogeneity and LST increased as the spatial extent (scale) of under-study landscapes increased. Overall, landscape metrics showed that the less fragmented, the more complex, larger, and the higher number of patches, the lower LST. The most significant relationship was seen between edge density (ED) and LST (r = - 0.47) at the sub-region scale. Texture measures showed a stronger relationship (R2 = 34.84% on average) with LST than landscape metrics (R2 = 15.33% on average) at all spatial scales, meaning that these measures had a greater ability to describe landscape heterogeneity than the landscape metrics. Conclusion: This study suggests alternative measures for overcoming landscape metrics shortcomings in estimating the effects of landscape heterogeneity on LST variations and gives land managers and urban planners new insights into urban design.

Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer (지표면의 비균질성이 지표층의 난류수송에 미치는 영향)

  • Hong, Seon-Ok;Lee, Young-Hee;Lim, Yoon-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

Adsorption Characteristics of Elemental Iodine and Methyl Iodide on Base and TEDA Impregnated Carbon (활성탄을 이용한 원소요오드 및 유기요오드 흡착특성)

  • Lee, Hoo-Kun;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-55
    • /
    • 1996
  • For the purpose of controlling the release of radioiodine to the environment in nuclear power plants, adsorption characteristics of elemental iodine and methyl iodide on the base carbon and 2%, 5% TEDA impregnated carbons were studied. The amounts of adsorption of elemental iodine and methyl iodide on the carbons were compared with Langmuir, Freundlich, Sips and Dubinin-Astakhov(DA) isotherm equations. Adsorption data were well correlated by the DA equation based on the potential theory. Adsorption energy distributions were obtained from the parameters of the DA equation derived from the condensation approach method. For the adsorption of methyl iodide and elemental iodine-carbon system, the DA equation can be well expressed by the degree of heterogeneity of the micropore system because the surface is nonuniform when its potential energy is unequal. The adsorption energy distribution wes investigated to find a surface heterogeneity on the carbon. The surface heterogeneity for iodine-carbon system is highly affected by the adsorbate-adsorbent interaction as well as the pore structure. The surface heterogeneity increases as a content of TEDA impregnated increases. The adsorption nature of methyl iodide on carbon turned out to be more heterogeneous than that of elemental iodine.

  • PDF

Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram (세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지) 관측지 지면모수의 공간 비균질성 정량화)

  • Moon, Sang-Ki;Ryu, Young-Ryel;Lee, Dong-Ho;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

SPECKLE NOISE SMOOTHING USING AN MODIFIED MEAN CURVATURE DIFFUSION FILTER

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.159-162
    • /
    • 2008
  • This paper presents a modified mean curvature diffusion filter to smooth speckle noise in images. Mean curvature diffusion filter has already shown good results in reducing noise in images while preserving fine details. In the mean curvature diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. In this paper, the diffusion coefficient is modified to be controlled adaptively by local image surface slope and heterogeneity. The local surface slope contributes to preserving details (e.g.edges) in image and the local surface heterogeneity helps the smoothing filter consider the amount of noise in both edge and non-edge area. The proposed filter's performance is demonstrated by quantitative experiments using speckle noised aerial image and TerraSAR-X satellite image.

  • PDF

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF

Impact of rock microstructures on failure processes - Numerical study based on DIP technique

  • Yu, Qinglei;Zhu, Wancheng;Tang, Chun'an;Yang, Tianhong
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.375-401
    • /
    • 2014
  • It is generally accepted that material heterogeneity has a great influence on the deformation, strength, damage and failure modes of rock. This paper presents numerical simulation on rock failure process based on the characterization of rock heterogeneity by using a digital image processing (DIP) technique. The actual heterogeneity of rock at mesoscopic scale (characterized as minerals) is retrieved by using a vectorization transformation method based on the digital image of rock surface, and it is imported into a well-established numerical code Rock Failure Process Analysis (RFPA), in order to examine the effect of rock heterogeneity on the rock failure process. In this regard, the numerical model of rock could be built based on the actual characterization of the heterogeneity of rock at the meso-scale. Then, the images of granite are taken as an example to illustrate the implementation of DIP technique in simulating the rock failure process. Three numerical examples are presented to demonstrate the impact of actual rock heterogeneity due to spatial distribution of constituent mineral grains (e.g., feldspar, quartz and mica) on the macro-scale mechanical response, and the associated rock failure mechanism at the meso-scale level is clarified. The numerical results indicate that the shape and distribution of constituent mineral grains have a pronounced impact on stress distribution and concentration, which may further control the failure process of granite. The proposed method provides an efficient tool for studying the mechanical behaviors of heterogeneous rock and rock-like materials whose failure processes are strongly influenced by material heterogeneity.

Impact of Vegetation Heterogeneity on Rainfall Excess in FLO-2D Model : Yongdam Catchment (용담댐 유역에서 식생 이질성이 FLO-2D 유량 산정에 미치는 영향)

  • Song, Hojun;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Two main sources of data, meteorological data and land surface characteristics, are essential to effectively run a distributed rainfall-runoff model. The specification and averaging of the land surface characteristics in a suitable way is crucial to obtaining accurate runoff output. Recent advances in remote sensing techniques are often being used to derive better representations of these land surface characteristics. Due to the mismatch in scale between digital land cover maps and numerical grid sizes, issues related to upscaling or downscaling occur regularly. A specific method is typically selected to average and represent the land surface characteristics. This paper examines the amount of flooding by applying the FLO-2D routing model, where vegetation heterogeneity is manipulated using the Manning's roughness coefficient. Three different upscaling methods, arithmetic, dominant, and aggregation, were tested. To investigate further, the rainfall-runoff model with FLO-2D was facilitated in Yongdam catchment and heavy rainfall events during wet season were selected. The results show aggregation method provides better results, in terms of the amount of peak flow and the relative time taken to achieve it. These rwsults suggest that the aggregation method, which is a reasonably realistic description of area-averaged vegetation nature and characteristics, is more likely to occur in reality.