• Title/Summary/Keyword: Surface geometry

Search Result 1,285, Processing Time 0.024 seconds

Development of 3D Burr Measurement Technique using Conoscopic Holography (Conoscopic Holography를 이용한 3D Burr 측정기술 개발)

  • 박상욱;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.65-72
    • /
    • 2004
  • For the burrs formed in machining are irregular and very sharp in shape, it is usually very difficult to measure burr accurately. It was proved that micro burr geometry can be measured imprecision by the Conoprobe sensor using conoscopic holography method. We developed 3D burr measurement system using this sensor. The system is composed of Conoprobe sensor, XY table, controller and 3D measurement program. Some measurements using the developed system are conducted for the burrs formed in micro drilling and piercing. Specific software fur burr measurement includes several function, calculation of burr volume, average burr height. Burs formed on a curved surface were compensated and measured successfully using the basic surface compensation function.

Haptic Interaction with Objects Displayed in a Picture based on Surface Normal Estimation (사진 속 피사체의 법선 벡터 예측에 기반한 햅틱 상호 작용)

  • Kim, Seung-Chan;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2013
  • In this paper we propose a haptic interaction system that physically represents the underlying geometry of objects displayed in a 2D picture, i.e., a digital image. To obtain the object's geometry displayed in the picture, we estimate the physical transformation between the object plane and the image plane based on homographic information. We then calculate the rotated surface normal vector of the object's face and place it on the corresponding part in the 2D image. The purpose of this setup is to create a force that can be rendered along with the image without distorting the visual information. We evaluated the proposed haptic rendering system using a set of pictures of objects with different orientations. The experimental results show that the participants reliably identified the geometric configuration by touching the object in the picture. We conclude this paper with a set of applications.

Diffraction of gaussian beam wave by finite periodic conducting strip grating on a grounded dielectric slab (접지된 유전체층위에 주기적인 스트립구조로서 구성되어 있는 유한한 격자구조에 의한 가우시안 빔의 회절특성)

  • 이종익;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.45-52
    • /
    • 1997
  • An analysis method for the electromagnetic scattering of a gaussian beam wave by finite periodic conducting strip grating on a groudned dielectric slab is considered. The intergral equation for the unknown current induced on the conducting strip surface is derived and solbed numerically by use of the method of moment. From knowledge of the strip current, the quantities of interest such as radiation pattern, the space wave power radiated into the free space, and the coupled surface wave power propagating along the dielectric slab are computed for the appropriately chosen parametes Some similarity between scattering behaviours of the present geometry and the infinite geometry is examined by observing the Off-bragg as well as bragg blaxing penomena in both geometries.The validity of the numerical results are assured by a check of the power conservation relations.

  • PDF

Design of the helicopter rotors by the lifting surface theory (양력면이론(揚力面理論)에 의(依)한 헬리콥터 로터의 설계(設計))

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.51-57
    • /
    • 1985
  • The object of this study is in the development of the computer program to predict the performance of rotor in hovering by getting the aerodynamic load acting on blade. For this work the vortex theory was chosen among the aerodynamic theories, blade was replaced by planar vortex panels, and prescribed wake for the wake geometry was selected and then represented by vortex lattices. To get the aerodynamic load on blade, flow was assumed to be incompressible, irrotational and steady, and the surface boundary condition of inviscid flow was used as boundary condition. Then the relationships between this load and flight condition and blade geometry were examined.

  • PDF

Virtualized CNC Milling Machine (가상 CNC밀링머신)

  • Baek, Dae-Kyun;Oh, Myung-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.365-369
    • /
    • 2001
  • This paper presented a new model of virtualized CNC milling machine. The model verifies the over cut, the under cut and the surface roughness using NC file generated from CAM and cutting condition. The model uses Z-map model to verify workpiece. In this paper, the model used the velocities of x, y and z direction and obtained a center point of a hall end mill for modeling Z-map of workpiece. To investigate the performance of the model, simulation study was carried out. As the results, the model gave geometry accuracy of workpiece, the surface roughness and the chip loads in finish cutting that can predict tool chipping. The virtualized CNC machine can he used a flat end mill, a ball end mill and a rounded end mill.

  • PDF

Application of Computer Aided Blank Design System for Motor Frame Die, Automobile (자동차 모터 프레임 금형에서 블랭크 설계 자동화 시스템의 적용)

  • 박동환;박상봉;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.753-756
    • /
    • 2000
  • The accumulated know-how and trial-and-error procedures are known as the best ways to determine blank shape and dimensions. One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of products is calculated by mathematical or 3-D modeling methods. A blank design system is constructed for elliptical deep drawing products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. This system consists of input geometry recognition module, 3-D modeling module and blank design module, respectively. Blank dimension of three types is determined by the same area, which was acquired in 3-D modeling module. The suitability of this system is verified by applying to a real deep drawing product.

  • PDF

Influence of CBN Tool Geometry on Cutting Characteristics of High Hardened Steel (CBN 공구의 형상이 고경도강의 절삭특성에 미치는 영향)

  • 문상돈;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and optimum tool geometry on milling of hardened STD11 steel. In the finish process office milling of high hardened STD11 steel by CBN tool, the optimum tool shape is suggested, which can minimize the tool fracture and chipping by impact. It is measured that cutting farce, tool wear and surface roughness generated during single-insert face milling using various geometric CBN tools. It has been found that the optimal chamfer angle of CBN tool is about -$25^{\circ}C$ and the suitable chandler width is 0.2mm. The nose radius of tool is the most excellent at 1.2mm in the viewpoint of tool wear and surface roughness.

  • PDF

Optimization of Current Distributions of Electroplating on Patterned Substrates with the Auxiliary Electrode (보조 전극을 이용한 패턴된 전극에서의 전류 밀도 분포의 최적화)

  • 김남석;모화동;강탁
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.164-173
    • /
    • 1995
  • Based on the potential-theory model for secondary current distribution, we could predict the thickness distributions of electroplating on patterned substrates with the different size of the auxiliary electrode. The substrates contain lithographic patterns at each sample geometry. Each sample geometry had different current distribution at the same condition except the size of the auxiliary electrodes. The size effect of the auxiliary electrode on thickness distribution of electrodeposition on patterned electrode was investigated in a series of experiments. Copper was galvanostatically deposited from an acid-sulfate solution in a reciprocating paddle cell. The thickness distributions of the workpiece scale measured by profilometry across the specimen were in good agreement with the current distribution predicted by boundary element method.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.