• Title/Summary/Keyword: Surface geometry

Search Result 1,285, Processing Time 0.028 seconds

Analyses on the Impact of Plastic Deformation on Change of the Road Surface Condition (소성변형 정도를 고려한 시간전개에 따른 노면상태 변화 분석)

  • SON, Young Tae;PARK, Sang-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.216-228
    • /
    • 2018
  • In this study analyzed the ponding changing of plastic deformation section follwed time development to apply weather, geometry and traffic data in additon to time development to improve road management service and safety of roads during or after rain. After We selected an 8.3km section of old national highway the Seongnam-Janghowon section and created a three-demensional surface of terrain through the numerical transformantion of design drawing data, with reflection the linear data of the same coordinate system in order to describe more realistic roads, we design additional structures with shading above roads. The altitude and azimuth of the sun were calculated and set based on the longitude and latitude data of the survey line for the analysis of the sun rate, and the daylight impact zone was visualized by setting the shaded time to an interval of 1 hour and the shade rate of the corresponding section. In addition, the evaporation volume calculated from weather data such as temperature, humidity, radiant energy, and road temperature analyzes together, it will use the way of a safer and more efficient road management as grasping the ponding changing more efficent in time development.

A Study on Heat Transfer Coefficient of a Perfluorocarbon Heat Pipe (Perfluorocarbon 히트파이프의 열전달 계수에 관한 연구)

  • 강환국;김철주;김재진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-201
    • /
    • 1998
  • In electric commuter trains using AC motors, lots of GTO thyristors and diodes are needed for power controls. These semiconductors generate heat about 1~2 kW, and for cooling which perfluorocarbon(PFC) heat pipes have been in use for the last two decades. The present study was investigated on the effects of such important design parameters as structure of internal surface (grooved or smooth), fill charge ratio, and inclinating angle from a vertical on heat transfer coefficients at both evaporators and condensers. To obtain experimental data, several heat pipes of the same geometry of 520 mm long and diameter of 15.88 mm but different in fill charge ratio and internal surface structure were designed and fabricated. For prediction of the heat transfer coefficients, related expressions were examined and the results of calculations were compared with experimental data. Performance tests were conducted while heat pipes operated at mode of thermosyphons. High enhancements of heat transfer coefficient were obtained internal grooves. In these cases, the evaporating heat transfer coefficients distributed in the range of 2~5.5 kW/$m^2$K, with an increase of heat flux from 15~45 kW/$m^2$. These experimental data were in good agreement with Rohsenow's expression based on nucleate boiling when correction factor $C_R$=1.3 was encountered. In addition, the condensation heat transfer coefficients were distributed from 1.5 to 3.5 kW/$m^2$K, and the data were in good agreements with Nusselt's correlation, based on filmwise condensation on vertical plate, when choosing a correction factor $C_N=4$. A fill charge ratio of 40~100% were recommended, and the in clination angle effects were negligible when the angle was higher then 30$^{\circ}$.

  • PDF

Numerical Computations on the Hydrodynamic Forces by Internal Waves in a Sediment Pocket (퇴적 침전구에서 발생하는 내면파 유동에 의한 유체력 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical method is developed to solve a two-dimensional diffraction problem for a body located in a sediment pocket where a heavier muddy water is trapped. In the present study, the wave exciting forces acting on a submerged body in the water-sediment interface by an incident wave is investigate. It is assumed that the heavier mud is trapped locally in a sediment pocket. A mathematical formulation is made in the scope of the potential theory. The fluid is assumed to be inviscid, incompressible and its motion irrotational. The boundary conditions on the unknown free surface and interface are linearized. As a method of solution, the localized finite-element method is adopted. In the method, the computation domain is reduced by utilizing the complete set of analytic solutions known in the infinite subdomain to be truncated by introduction of an appropriate juncture conditions. The main advantage of this method is that any complex geometry of the boundaries can be easily accommodated. Computations are carried out for mono-chromatic plane progressive surface waves normally incident on the domain. Numerical results are compared with those obtained by Lassiter based on Schwingers variational method. Good Agreements are obtained in general. Another numerical computations are made for the cases with and without a body in the sediment pocket.

  • PDF

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.

The Shear Wave Velocity Analysis using Passive Method MASW in the Center of the Metropolis, Gyeongsan (Passive Method MASW 방법을 이용한 경산시 도심구간에서의 전단파 속도 분석)

  • Lee, Hong-Gyu;Kim, Woo-Hyuk;Jang, Seung-Ik;Lee, Seog-Kyu
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • Active method MASW(Multi channel Analysis of Surface Waves), which is one of the surface wave exploration methods, has the difficulties to supply enough shear wave velocity log, caused by short spread length and lack of low frequency energy. To make up this defect, the passive method MASW survey is taked and analysised in Daeku subway construction site, Jungpyung-dong Gyeongsan city. The passive method MASW using the microtremor, improve the quality of the overtone record by applying the azimuth correction caused offline sources. And combing with active overtone record which is acquired by same geometry has the benefits of improve shallow depth resolution and extend possible investigation depth. To take the optimized acquisition parameters, the 2m, 4m, and 6m geophone spacing is tested. And 2m spacing overtone image could make the reliable shear wave velocity log.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

Investigations of LSM-YSZ as Air Electrode Materials for Solid Oxide Fuel Cells (고체산화물 연료전지용 공기극재료로써의 LSM-YSZ 전극 연구)

  • Lee, Yu-Gi;Kim, Jeong-Yeol;Lee, Yeong-Gi;Park, Dong-Gu;Jo, Beom-Rae;Park, Jong-Wan;Visco, Steven J.
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1075-1082
    • /
    • 1999
  • Composite air electrodes of 50/50 vol% LSM- YSZ where LSM =$\textrm{La}_{1-x}\textrm{Sr}_{x}\textrm{MnO}_{3}$(0$\leq$x$\leq$0.5) were prepared by colloidal deposition technique. The electrodes were then examined by scanning electron microscopy (SEM) and studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell (SOFC). Reproducible impedance spectra were confirmed by using the improved cell, consisting of LSM- YSZ/YSZ/LSM-YSZ. These spectra were a strong function of operating temperature and the stable conditions for the cells were typically reached at $900^{\circ}C$. The typical spectra measured for an air//air cell at $900^{\circ}C$ were composed of two arcs. Addition of YSZ to the LSM electrode led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities could further reduce cathode resistivity. The cathodic resistivity of the LSM-YSZ electrodes with catalytic interlayer (Ni or Sr) was much smaller than that of LSM-YSZ electrodes without catalytic interlayer. In addition, the cathodic resistivity of the LSM-YSZ electrodes was a strong function of composition of electrode materials, the electrolyte geometry, and applied current.

  • PDF

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.