• Title/Summary/Keyword: Surface free energy

Search Result 636, Processing Time 0.029 seconds

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

  • Cheng, Desheng;Wang, Weihua;Yang, Shijun;Deng, Haifei;Wang, Rongfei;Wang, Binjun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.360-367
    • /
    • 2016
  • A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead-bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is $60{\pm}1mm$, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

Effect of Surface Treatment of Polycarbonate Film on the Adhesion Characteristic of Deposited SiOx Barrier Layer (폴리카보네이트 필름 표면 처리가 증착 SiOx 베리어층 접착에 미치는 영향)

  • Kim, Gwan Hoon;Hwang, Hee Nam;Kim, Yang Kook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2013
  • The interfacial adhesion strength is very important in $SiO_x$ deposited PC film for the barrier enhanced polycarbonate (PC) flexible substrate. In this study, PC films were treated by undercoating, UV/$O_3$ and low temperature plasma and then the effect of physical and chemical surface modifications on the interfacial adhesion strength between PC film and $SiO_x$ barrier layer were studied. It was found that untreated PC film shows significantly low interfacial adhesion strength due to the smooth surface and low surface free energy of PC. Low temperature plasma treatments resulted in the increase of both surface roughness and surface free energy due to etching and the appearance of polar molecules on the PC surface. However, UV/$O_3$ treatment only shows the increase of surface free energy by developed polar molecules on the surface. These surface modifications caused the enhancement of surface interfacial strength between PC film and $SiO_x$ barrier. In the case of undercoating, it was found that the increase of surface interfacial strength was achieved by adhesion between various acrylic acid on acrylate coated surface and $SiO_x$ without increase of polar surface energy. In addition, the barrier property is also improved by organic-inorganic hybrid multilayer structure.

Understanding of Protein Adsorption to Contact Lens Hydrogels with Varying Surface Energy (콘택트렌즈용 하이드로젤 계면에너지에 따른 단백질 흡착현상의 이해)

  • Jeon, So-Ha;Noh, Hye-Ran
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.338-343
    • /
    • 2012
  • Interfacial properties of commercially available soft contact lens hydrogels were studied to understand thermodynamic phenomena of protein adsorption. Hydrogel particles ($1{\times}1mm^2$) with varying water wettability were exposed to bovine serum albumin solutions for an hour. The remained albumin solutions were analyzed with Bradford assay method. The amount of protein adsorbed to hydrogels increased with protein solution concentrations following Langmuir isotherm. The partition coefficient ($P$) and Gibbs free energy cost of dehydrating the surface region by protein displacement upon adsorption increased with increasing hydrophilicity of contact lens. Understanding of physical chemistry in protein adsorption to contact lens materials enabled elucidating relationships between surface energy and albumin adsorption capacity.

Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites (에폭시 복합체의 표면 및 기계적 특성에 미치는 액상고무의 효과)

  • Choi, Sei-Young;Chu, Jeoung-Min;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Epoxy resins are thermoset polymers that exhibit good adhesion, creep resistance, heat resistance, and chemical resistance. These polymers, however, give poor resistance to crack propagation and low impact strength. In this study, epoxy/carboxyl-terminated butadiene acrylonitrile (CTBN) and epoxy/amine-terminated butadiene acrylonitrile (ATBN) composites were prepared with different ratio of CTBN and ATBN to improve low impact strength of epoxy resin. The impact strength of epoxy/elastomeric composites shows high values with increasting nonpolar surface free energy while the tensile strength and the glass transition are decreased. The highest surface free energy, impact strength observed when 15 phr CTBN and 15 phr ATBN added, respectively. It can be concluded that as liquid rubber to improve impact strength of epoxy resin, ATBN is more preferable to CTBN.

Surface Structure of Blend Films of Styrene/Acrylonitrile Copolymer and Poly(methyl methacrylate)(PMMA) or Hydrolyzed PMMA

  • 이원기;K. Tanaka;A. Takahara;T. Kajiyama;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.958-961
    • /
    • 1997
  • The compatibility and the surface structure of blends of poly(styrene-co-acrylonitrile) (SAN) with either poly(methyl methacrylate) (PMMA) or hydrolyzed PMMA (H-PMMA) were studied in terms of film thickness, interaction, and surface free energy difference on the basis of X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform IR spectroscopy and atomic force microscopy. The XPS measurement showed that the surface enrichment of (PMMA/SAN) blends with different AN contents of SAN and with different carboxyl acid contents of PMMA was dependent on the molecular interaction, the surface free energy difference between components and the sample preparation history. It was found that the compatibility of H-PMMA and SAN was reduced with increasing carboxyl acid content of PMMA.

Development of indirect EFBEM for radiating noise analysis including underwater problems

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.392-403
    • /
    • 2013
  • For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.

Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment (Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상)

  • Ji Young-Yeon;Kim Sang-Sik
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.391-396
    • /
    • 2006
  • It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity hydrophobicity and hydrophilicity. Using plasma treatment, interfacial pro-perty can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66) /polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hvdrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of $50.03 mJ/m^2$ with the lowest contact angle of $14^{\circ}$ was obtained at plasma process power of 100 W, treatment time of 2 min and $Ar/O_2$ gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Synthesis and Crystallization Behaviors of Modified PET Copolymers

  • Hu, Seung-Woo;Myung, Hee-Soo;Bae, Jong-Seok;Yoo, Eui-Sang;Im, Seung-Soon
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2000
  • A series of random copolyesters having various compositions were synthesized by bulk copolymerization of bishydroxyethyl terephthalate (BHET) with 1,4-cyclohexane dimethanol (CHDM) or dimethyl isophthalate (DMI). CHDM and DMI content was less than 10 wt%. For the synthesized copolyesters, isothermal crystallization rate, melting behavior, and equilibrium temperature were investigated by calorimetry and by Avrami and Hoffman-Weeks equation. Crystalline lattice and morphology were studied by WAXD and SEM. Regardless of the composition, the value of the Avrami exponent was about 3, which indicates that crystallization mechanism of the copolyester was similar to those of PET homopolymer. Incoporation of CHDM or DMI units in PET backbone decreased the crystallization rate of the copolyesters. Surface free energy of copolyesters was evaluated using the newly proposed equation. The value of surface free energy was about 189$\times$$10^{-6}$/$J^{2}$/$m^{4}$ regardless of comonomer contents. This result is in good agreement with that of PET homopolymer.

  • PDF