• Title/Summary/Keyword: Surface finishing processes

Search Result 46, Processing Time 0.038 seconds

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

A Reliability Test for ph-free SnCu Plating Solution and It's Deposit (Sn-Cu 무연 도금용액 및 피막의 신뢰성평가)

  • Lee Hong-Kee;Hur Jin-Young
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.6
    • /
    • pp.216-226
    • /
    • 2005
  • Pb-Free Technology was born with environmental problems of electronic component, Being connected by big and small project of every country. Also, in each country environment is connected and various standards of IEC, ISO, MIL, JIS, KS, JEDEC, EIAJ etc. All products can divide at solder part and finishing part These can tested each and synthetically divide. This research is reliability evaluation for three kind of ph-free SnCu solder plating solution and it's deposit. First, executed analysis about Pure Sn, SnCu solutions and plating surface by way similar to other plating solution analysis. Next, executed reliability about test method and equipment for reliable analyzer system construction. Next, data comparison and estimation, main estimation test method and item's choice. In this paper the systematic surface analysis and reliability for plating solutions and it's deposit in metal surface finishing processes could be shown.

Remaining volume after smoothing(RVAS) variation according to runout (런아웃의 양에 따른 잔류 부피의 변화)

  • Kim M.T.;Lee H.S.;Je S.U.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1248-1252
    • /
    • 2005
  • Mold-manufacturing process consists of machining and finishing process that are strongly related in each other. But there are few studies about mold-manufacturing process to control those two processes simultaneously. Especially, runout distorts the machined surface from expected so it changes the finishing process and mold-manufacturing time. In this work, basic analyses and experiments were carried out to study RVAS variation according to runout in HSM. To perform those analyses, firstly surface generation analysis was done including runout in ball end milling and then the RVAS that could relate machining and finishing process was proposed. And the optimal finishing process in HSM according to RVAS was also proposed. Through experiment runout occurrence and above analyses were verified.

  • PDF

Surface Finishing Technique for Micro 3-Dimensional Structures Using ER Fluid

  • Kim, Wook-Bae;Lee, Sang-Jo;Kim, Yong-Jun;Lee, Eung-Sug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • In this study, the electrorheological (ER) fluid was used as finishing agent. Since the apparent viscosity can be controlled by an electric field, the ER fluid can be one of efficient materials in finishing processes. To finish small 3-dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, part and auxiliary electrode was described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which had been also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool was performed considering the non-uniform electric field. Finally, borosilicate glass was finished using the mixture of the ER fluid and abrasive particles and material removal with field strength and surface roughness were investigated.

Comparison of Physical Properties on the Worsted Fabrics Woven with Rapier and Air Jet Looms(II) - Characteristics of Shear, Compression and Surface - (Air Jet와 Rapier 직기 특성이 모직물의 역학적 특성에 미치는 영향(II) - 전단특성, 압축특성, 표면특성 관하여 -)

  • 박수현;김승진;홍성철
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • In this study, the fabrics were woven with worsted grams of Nm 2/72 and the structure of 5 harness satin on rapier and air-jet loom with different weft insertion mechanism and then fabrics were finished in the same processes. Also the physical properties were measured with KES-FB system and discussed with the characteristics of looms for comparing the difference of physical properties of the worsted fabrics which were woven with two different looms under the same structure. Pot shearing and compression properties, then showed similar behavior and the fabric finishing processes were seemed to affect much more than the difference of the loom types. For the surface roughness, the rapier fabrics showed higher irregularity than the air-jet fabrics.

  • PDF

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

Effect of surface finishing treatments on the color stability of CAD/CAM materials

  • Ozen, Funda;Demirkol, Nermin;Oz, Ozge Parlar
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.150-156
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the effect of different surface finishing processes on the color stabilities of lithium disilicate glass-ceramics, zirconia-reinforced lithium silicate ceramics, and resin nanoceramics after artificial ageing. MATERIALS AND METHODS. 216 samples were prepared from 3 different CAD/CAM materials (LAVA Ultimate, IPS e.max CAD, VITA Suprinity) with A1 HT color at a size of 14 × 12 mm and a thickness of 0.5 ± 0.05 mm. Color measurements of the samples were performed with a spectrophotometer using color parameters and CIE Lab color system on a gray backing between baseline color and after 5000 cycles of artificial ageing in 4 stages (i.e. the first measurement before the treatment, the second measurement after polishing, the third measurement after cement application, and the fourth measurement after artificial ageing). The results were evaluated using the Variance analysis and Fisher's LSD test. RESULTS. Resin nanoceramics (LU) exhibited higher color change values than zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) ceramics after artificial ageing. Manual polishing and glazing resulted in similar color change for LU and VS (P>.05). In the EC group, glazing provided statistically different results as compared to the manual polishing and control groups (P<.05). Among the ceramic groups, color change values of the subgroup, which was treated by glazing, of the zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) samples were below the clinically acceptable level (ΔE < 3.5). CONCLUSION. The lowest color change for all stages was observed in Vita Suprinity.

Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling (엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정)

  • 류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF