• Title/Summary/Keyword: Surface exfoliation

Search Result 135, Processing Time 0.022 seconds

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

Deterioration Assessment and Dissection Process for Rock Properties of Stone Pagoda in the Mireuksaji Temple Site, Korea (익산 미륵사지 석탑의 해체과정과 구성부재의 훼손도 평가)

  • Yang, Hee Jae;Kim, Sa Dug;Lee, Chan Hee;Choi, Seok-Won
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.77-88
    • /
    • 2004
  • This study evaluates the occurrences, phyfical weathering and biological deterioration on rock properties during the dissection process an object of stone pagoda in the Mireuksaji temple site. For restoration and conservation, all kinds of rock properties are carried out detailed scientific investigation and diagnosis. Constituting rocks of the pagoda composed mainly of equi-granular medium grained biotite that rock properties presumed to be use about 3,000 materials. Main external properties of the pagoda are total 446 materials, and the rock properties under the concentration load on the each floors occurred with overlapping fracture, weathering and deteriorations. The 84 materials show highly degraded about $18.8\%$ among the external properties. Representative physicochemical deteriorations are fracture, loss, break, exfoliation, degradation, grain shaped dissolution, relief surface, discoloration and hydroxide precipitates, in this study, the deterioration state of each properties give a precisely description and analysis. Coverage of lichen and algae on the rock surface represented about $85\%$. As the some properties, biological contaminants withered up when spray rock surface with diluted cleaning chemicals. Results of the study are utilized an application for restoration system and detailed investigation during the dissection process of stone cultural properties.

  • PDF

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

Characteristics of the rocks and its weathering phenomena of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, Korea (감은사지 3층 석탑(동탑)과 나원리 5층 석탑의 암석과 풍화현상의 특징에 대한 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.20-40
    • /
    • 1996
  • For obtaining the basic data for establishing plan on the conservation of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, the characteristics of the rock and weathering phenomena have been investigated. The former consists of quartz-rlch granite containing small amount of biotite, and the latter of alkali granite with abundant perthite, These rock phases are nearly identical to the marginal phase of medium-grained hornblende-biotite granodiorite and alkali granite respectively, which are distributed around the Kyeongju city. The rock weathering may be governed mainly by chemical weathering of feldspar following physical segregation of quartz grains and pervasive moss. The feldspar easily dissolve In the solution with pH<7 to precipitate clay mineral such as a kaolinite as a secondary phase on the feldspar surface. However, the chemical weathering of feldspar may continue when the surface is washed by the rain according to removal of the reprecipitated phase. On forwarding, the weathering may be greatly Influenced by the acid rain. Exfoliation and weathering along igneous lineation resulting in exfoliating along the structural line are the characteristic weathering phenomena. Also the secondary small cracks are irregularly developed on the rocks due to different strain on places by the overall structural unbalance of the pagodas. Along these cracks, the rain water intrudes deeply into the rocks and weathering occurs intensively compared to other parts. Weathering may be artificially promoted by the grinding or sculpturing when the pagodas were made. Because it may influence on the physical properties of the rocks as well as destruct the surface of the feldspar crystals, the major constituents of the rocks, it results in providing the environment of easy chemical weathering along time. For conservation, the pagodas must be structurally balanced by compacting the soil basement and supplementing rocks on the destroyed part. On the exfoliated part it is better not to be artifically treated as using cementing material. But the cracks may be filled up by cementing material to avoid the intrusion of acidic water. To supplement the rocks on the destroyed part, it may be better to use similar rock phases from identical biotite granite and alkali granite masses around the Kyeongju city.

  • PDF

Effect of Epidermal Changes in the Mice Skin Following Glycolic Acid Peeling (글리콜산을 사용한 화학적 필링이 Mice 피부 표피에 미치는 영향)

  • Lee, Jee-Yean;Lee, Suk-Jun;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.245-251
    • /
    • 2010
  • In this study, we applied 15% glycolic acid peeling agent and 30% glycolic acid peeling agent to the dorsal skin of mice and analyzed the oil content, moisture content, and pH value of the skin before and after test using cutometer. Ultrastructure for changes in the epidermis of mice were observed under a dermoscope and a scanning electron microscope before and after test. When using 15% glycolic acid peeling agent, the changes of moisture content was measured 74.67 AU for the normal control group and 70.21 AU for the experimental group, the oil content was 13.49 mg/$cm^2$ for the normal control group before test and 8.25 mg/$cm^2$ after test, and the pH value was 6.70 and 5.36 before and after test, respectively. When using 30% glycolic acid peeling agent, the moisture content was measured 74.46 AU for the normal control group before test and 53.50 AU for the experimental group after test, the oil content was 13.82mg/$cm^2$ and 5.70 mg/$cm^2$ before and after test, and the pH value was 6.45 and 4.58 before and after test, respectively. As such, it was found that the changes of moisture and oil content on the skin rely on the concentration of peeling agent and the degree of exfoliation of keratin. The surface of stratum corneum of mice with application of 15% glycolic acid peeling agent was relatively smooth and the exposed cellular surface of keratinocyte had some wrinkles. The surface of stratum corneum of mice with application of 30% glycolic acid peeling agent was smooth. No wrinkles were observed under high-resolution scanning electron microscope.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Deterioration State and Behavior of Discontinuity System of the Seosan Maaesamjonbulsang (Rock-carved Triad Buddha in Seosan), Korea (서산 마애삼존불상의 훼손상태 및 불연속면의 거동특성)

  • Lee, Sun-Myung;Lee, Chan-Hee;Choi, Seok-Won;Yun, Seok-Bong
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.85-98
    • /
    • 2006
  • Rock property of the Seosan Maaesamjonbulsang is composed of biotite granite with medium grained texture. The triad Buddha is highly deteriorated by the joint, fracture, break-out, exfoliation, dew condensation of the surface and discoloration of the secondary pollutant. Host rock of the triad Buddha is divided dozens of rock blocks with various shape, and developed irregular discontinuity planes. Besides, the host rock is promoted biological pollution due to the surrounding crowded vegetation and high humidity environment. As the results of structural stability, it is confirmed that developed discontinuity system in the host rock is exposed instability sloping environment. Therefore, the host rock and surroundings are required maintenance, and required preservation by continuance monitoring for understand behavior of discontinuity system.

  • PDF

Investigation and Assessment of the Deterioration on Aging Large Water Mains (대형 상수관로 노후상태 조사 및 평가에 관한 연구)

  • Kim, Ju-Hwan;Bae, Chul-Ho;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.545-558
    • /
    • 2006
  • The current conditions of large water mains are evaluated by deteriorations and the causes of deterioration are investigated through visual assessments in the field, mechanical tests and analysis of chemical compositions in laboratory for each pipe material, unlined cast iron pipes (CIPs), ductile iron pipes (DCIPs) and steel pipes (SPs) Tubercles and scales from internal and external corrosion of unlined cast iron pipes were identified as the causes of functional performance limitations in large water mains. It is investigated that main causes of internal and external corrosion of water pipes are from lots of depositions of organic and inorganic substances on pipe surface, concentrated pitting, and uniform corrosion by local or global exfoliation or detachment of lining and coatings of DCIPs and SPs. Internal and external corrosion depths of CIPs were higher than those of DCIPs and SPs. Consequently, total corrosion rate summed internal and external corrosion rates of CIPs also were shown to be higher than those of DCIPs and SPs. The failure time from hole generation of CIPs by total corrosion rate was predicted to be taken sixteen years, and DCIPs and SPs were twenty-six years and one hundred and fifty three years. And longitudinal deflection of investigated water mains were not happened and mechanical strengths such as tensile strength, elongation, and hardness also were mostly suited to Korea Standards. It was thought that the weakness of tensile strength of one sample(S-11) was, however, due to higher carbon contents(%) in CIPs. Pipe deterioration score of S-46 was 55.2 and was preferentially assessed to be rehabilitated.

TREATMENT OF CLASS Ⅲ MALOCCLUSION WITH HORSESHOE APPLIANCE : CASE REPORT (Horseshoe Appliance를 이용한 Ⅲ급 부정교합의 치험례)

  • Hong, Han-Young;Park, Jae-Hong;Choi, Yeong-Chul;Kim, Kwang-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.376-381
    • /
    • 2008
  • In mixed dentition there exists many empty spaces in the arch due to eruption of permanent teeth and exfoliation of primary teeth. The empty spaces makes it difficult to apply fixed orthodontic appliances. Horseshoe Appliance can be used effectively at this stage, holding the whole dentition in one piece. It covers every surface of erupted teeth and prevents extrusion and rotation of single tooth. By using intermaxillary elastic force, remodeling of the alveolar bone is opposite in each arch. In patients who were treated with horseshoe appliance, forward growth of maxilla, labioversion of maxillary incisors and linguoversion of mandibular incisors were obtained. Minimum downward and clockwise rotation of mandible was shown, so increasing anterior facial height was minimized.

  • PDF