• Title/Summary/Keyword: Surface energetics

Search Result 23, Processing Time 0.022 seconds

Effect of Acid-Base Characteristics of Carbon Black Surfaces on Mechanical Behaviors of EPDM Matrix Composites (카본블랙 표면의 산-염기 특성변화가 카본블랙/EPDM 복합재료의 기계적 특성에 미치는 영향)

  • Park Soo-Jin;Kang Jin-Young;Hong Sung-Kwon
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 2005
  • The effect of acid-base treatments of carbon blacks (CBs) was investigated in the mechanical properties of CBs/rubber composites. The surface characteristics of the CBs were determined by the pH, acid-base values, and surface energetics. Their mechanical properties of the composites were also evaluated by the crosslink density $(V_e)$ and tearing energy (T). As an experimental result, acidically treated CBs led to the increase of the specific component $({\gamma}s^{sp})$, resulting in decreasing the mechanical properties of the composites. However, basically treated CBs showed a higher value of the dispersive component $({\gamma}s^L)$ than that of the untreated or acidically treated CBs. It was also found that the interaction of the CBs-rubber was improved, resulting in the improvement of the crosslink density and mechanical properties of the composites. It was then remarked that the acid-base characteristics of the CB surfaces made an important role in improving the physical properties of the rubber matrix composites.

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.