Browse > Article

Effect of Acid-Base Characteristics of Carbon Black Surfaces on Mechanical Behaviors of EPDM Matrix Composites  

Park Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Kang Jin-Young (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Hong Sung-Kwon (Polymer Science and Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.29, no.2, 2005 , pp. 151-155 More about this Journal
Abstract
The effect of acid-base treatments of carbon blacks (CBs) was investigated in the mechanical properties of CBs/rubber composites. The surface characteristics of the CBs were determined by the pH, acid-base values, and surface energetics. Their mechanical properties of the composites were also evaluated by the crosslink density $(V_e)$ and tearing energy (T). As an experimental result, acidically treated CBs led to the increase of the specific component $({\gamma}s^{sp})$, resulting in decreasing the mechanical properties of the composites. However, basically treated CBs showed a higher value of the dispersive component $({\gamma}s^L)$ than that of the untreated or acidically treated CBs. It was also found that the interaction of the CBs-rubber was improved, resulting in the improvement of the crosslink density and mechanical properties of the composites. It was then remarked that the acid-base characteristics of the CB surfaces made an important role in improving the physical properties of the rubber matrix composites.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 F. W. Barlow, Rubber Compounding, Marcel Dekker, New York, 1993
2 A. I. Medalia and G. Kraus, Reinforcement of Elastomers by Particulate Fillers, Academic Press, San Diego, 1994
3 P. Antony and S. K. De, Polymer, 40, 1487 (1999)
4 M. E. Semann, C. A. Quarles, and L. Niiel, Polym. Degrad. Stab., 75, 259 (2002)
5 B. Ellis and G. N. Welding, Techniques of Polymer Science, Soc. Chem., London, 1964
6 F. M. Fowkes, Physico-Chemical Aspects of Polymer Surfaces, Plenum, New York, 1983
7 S. J. Park and J. S. Kim, J. Colloid Interf. Sci., 232, 311 (2000)
8 W. Jia and X. Chen, J. Appl. Polym. Sci., 66, 7885 (1997)   DOI   ScienceOn
9 H. V. Greensmith and A. G. Thomas, J. Polym. Sci., 43, 189 (1955)
10 H. Essawy and D. E. Nashar, Polym. Testing, 23, 803 (2004)
11 F. Findik, R. Yilmaz, and T. Koksal, Mater. Design, 25, 269 (2004)
12 M. J. Wang and S. Wolff, Carbon Black Science and Technology, Marcel Dekker, New York, 1993
13 P. Ghosh and A. Chakrabarti, Eur. Polym. J., 36, 607 (2000)
14 A. W. Adamson, Physical Chemistry of Surfaces, 5 Ed., John Wiley, New York, 1990
15 D. F. Twiss, J. Soc. Chem. Ind., 44, 1067 (1925)
16 S. S. Choi, J. Anal. Appl. Pyrolysis, 55, 161, (2000)
17 D. J. Kohls and G. Beaucage, Curr. Opin. Solid State Mat. Sci., 6, 183 (2002)
18 R. Faez, W. A. Gazotti, A. Marco, and D. Paoli, Polymer, 40, 5497 (1999)
19 G. A. Schwartz, S. Cerveny, A. J. Marzocca, M. Gerspacher, and V. Nikiel, Polymer, 44, 7229 (2003)
20 G. Akovali and I. Ulkem, Polymer, 40, 7417 (1999)
21 P. J. Flory and J. Rhener, J. Chem. Phys., 11, 512 (1943)
22 L. Sereda, M. M. Lopez-Gonzalez, Y. Visconte, R. Nunes, G. Furtado, and E. Riande, Polymer, 44, 3085 (2003)
23 L. Flsndin, J. Y. Cavaille, Y. Brechet, and R. J. Dendievel, J. Mater. Sci., 34, 1753 (1999)
24 S. E. Gwaily, M. M. Badawy, H. H. Hassan, and M. Madani, Polym. Testing, 22, 3, (2003)   DOI   ScienceOn
25 J. L. Leblanc, Prog. Polym. Sci., 27, 627 (2002)
26 H. P. Boehm, Adv. Catal., 16, 179 (1966)
27 K. W. Cho and D. H. Lee, Polymer, 41, 133 (2000)
28 A. M. Gessler, Rubber Chem. Technol., 42, 858 (1969)
29 M. J. Wang, S. X. Lu, and K. J. Mahmud, J. Polym. Sci., 38, 1240 (2000)
30 M. J. Wang and M. Jiao, Rubber Chem. Technol., 71, 520 (1998)
31 P. J. Flory, J. Chem. Phys., 18, 108 (1950)   DOI