• Title/Summary/Keyword: Surface electric property

Search Result 108, Processing Time 0.03 seconds

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

MOS transistor probe for surface electric properties (표면 전기 특성 측정을 위한 MOS 트랜지스터 탐침 개발)

  • Lee, Sang-Hoon;Seo, Jae-Wan;Lim, Geun-Bae;Shin, Hyun-Jung;Moon, Won-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1963-1966
    • /
    • 2008
  • We fabricate and evaluate the metal-oxide-semiconductor (MOS) transistor probe with the focused-ionbeam (FIB) for surface electric properties. The probes are designed with the rectangular and V-shaped structures, and their dimensions are determined considering the contact mode operation. The conductive nano tip is grown with FIB system, and deposition condition is controlled for the sharp tip. The fabricated device is applied to the various test patterns like the metal lines and PZT poling regions, and the results show the well defined measurement patterns.

  • PDF

A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets (중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

Surface sliding effect of nematic liquid crystals on soft- polymer

  • Lee, Chang-Hoon;Gwag, Jin-Seog;Lee, You-Jin;Jin, Min-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.310-313
    • /
    • 2008
  • Recently, study on the weak interaction energy between the soft polymer surface and liquid crystals has been a primary topic for new LC device applications. In this paper, to understand the switching property of nematic liquid crystals (LCs) at the interface with a weak anchoring boundary, we investigate experimentally the rotation property of surface nematic director by electric field on non-treated Poly-Methylmethacrylate (PMMA, $T_g=110^{\circ}C$, Sigma Aldrich) film observed under various temperatures including the glass transition temperature ($T_g$) of the polymer layer.

  • PDF

Electric Fire Prediction by Detection of Spark Signals (스파크 신호검출에 의한 전기화재 예측)

  • 김일권;송재용;길경석;권장우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.371-374
    • /
    • 2001
  • This paper describes a technique that can predict electric fires by detecting a spark signal generated from operation of electric facilities. An electric fire lead a loss of life as well as huge property, therefore it is very Important to predict an electric fire and eliminate the causes of it. Electrical spark which is ranked as majority causes of electric fires has a characterized frequency bandwidthdistinguishedfrompowerfrequenry. In the experiment, various spark signals are simulated in a condition such as short circuit, flashover and surface discharge. The results showed that the monitoring of spark signals can predict electric fires.

  • PDF

Study on the Surface Electric Resistance for Inner COnductive Film in CRT Funnel (브라운관 Funnel Glass 내면의 흑연피막의 표면전기저항에 관한 연구)

  • 김상문;김태옥;신학기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1155-1161
    • /
    • 1998
  • We have studyed the surface electric resistiance for inner conductive film consisted of graphite and iron oxide by coating the conductive paint on inner face of 28" wide CRT funnel and have evaluated the working properties of 28" wide CRT according to the surface electric resistiance. We found that the viscosity of paint and the thickness of conductive film became the higher but the surface electric resistiance of con-ductive films was the lower than before in accordance with the increase of solid contents in conductive paint and that the surface condition and the surface electric resistiance of conductive films changed highly ac-cording to the drying conditions also. From these results we could get the uniform thickness and the un-iform film resistance and the optimum working property of selectric propertise in CRT when we used the conductive paint with solid contents 28% and viscosity about 13cps.

  • PDF

A Studies on Aging Properties for Transmission Line Polymer Insulators which are Installed in service (실계통에 포설된 송전용 고분자 애자의 AGING 특성 연구)

  • Kim, So-Yeon;Lee, Sang-Jin;Ha, Young-Kil;Kim, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.152-154
    • /
    • 2001
  • Recently the extensive use of composite insulators for transmission lines can ultimately be justified only on long-term qualification tests. Especially, it is possible for the Polymer insulator to be aged in according to the environment in which it is used this may bring about the decrease of the duration of voltage application. So, this paper deals with aging property of the polymer insulator installed at real transmission line in the industry area. The contact angle, arc test, tracking test were measured for acquiring the degradation characteristics of silicone rubber and the SEM, XRF, FT-IR tests were measured for analyzing the crack and components. Also the surface leakage current of the polymer insulator was compared with that of the porcelain insulator. Finally, we knew that the aging property was not appeared during seven months at real transmission line in the industry area.

  • PDF

Enhanced Photocatalytic Activity by the Combined Influence of Ferroelectric Domain and Au Nanoparticles for BaTiO3 Fibers

  • Zhang, Xiaoshan;Huan, Yu;Zhu, Yuanna;Tian, Hui;Li, Kai;Hao, Yanan;Wei, Tao
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850149.1-1850149.10
    • /
    • 2018
  • Ferroelectric particles have been applied in the photocatalytic field because the spontaneous polarization results in the internal electric field, which can accelerate the separation and migration of photogenerated carriers. In this study, the $BaTiO_3$ (BT) fibers are synthesized by electrospinning. The BT fibers calcined above $800^{\circ}C$ exhibit a strong ferroelectric property, which is verified by a typical butterfly-shaped displacement-voltage loop. It is found that the BT fibers with the single-domain structure exhibit better photocatalytic performance than that with the multi-domain configuration. When the single-domain transforms into multi-domain, the integrated internal electric field correspondingly breaks up, inducing that the internal electric field might cancel each other out and diminish the separation of photogenerated carriers. Also, the Au nanoparticles can improve the photocatalytic activity further on account of the surface plasmon resonance. Therefore, it is suggested that Au nanoparticles decorated on ferroelectric BT nanomaterials are promising photocatalysts.

Stress Measurement of Structural Member Using Piezoelectric Property (압전 특성을 이용한 구조물 부재의 응력측정)

  • Im, Eun Sang;Kim, Tea Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • A stress measurement method of structural member using piezoelectric property and electrostatic voltmeter is presented. The electric potentials of the surface of the piezoelectric element, which are proportional to the strain ${\varepsilon}$ on the structural member, are measured by an electrostatic voltmeter during load cycling. The stress ${\sigma}$ is calculated by this strain ${\varepsilon}$. Moreover, a stress distribution measurement tape which can be used for the stress distribution measurement along a specified line on the surface of structural member is developed, and the surface potential was measured by an electric static voltmeter of non-contact type. The applicability of the stress distribution measurement tape is examined through experiments using a notched specimen under cyclic loading. The measured distributions of x, y and xy are compared with those calculated by FEM analysis.

Mechanical Property and Microstructure of the Annealed Fe-Si Alloy Manufactured by Laser-Powder Bed Fusion (L-PBF 공정 처리된 Fe-Si 합금의 열처리 조건에 따른 미세조직 및 기계적 특성)

  • J. Y. Park;M. S. Gwak;S. G. Jeong;H. S. Kim;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • To overcome a climate change, manufacturing complex-shaped electric mobility parts becomes one of the important issues for enhancing a performance of motor with reducing their weight. Therefore, development of laser-based additive manufacturing shed on light due to their flexible manufacturing capacity that can be suitable to solve the poor formability of Fe-Si alloys for electric mobility parts. Although there are several studies existed to optimize the performance of additively manufactured Fe-Si alloys, the post-annealing effect was not well investigated yet though this is important to control the texture and mechanical properties of additively manufactured parts. In the present work, annealing effect on the mechanical property and microstructure of additively manufactured Fe-4.5Si alloy was investigated. Because of the ordered phase initiation after annealing, the hardness of additively manufactured Fe-4.5Si alloy increased up to 1173 K while a hardness drop occurs at the 1273 K condition due to the micro-crack initiation. The response surface methodology result represents the 1173 K-5 h sample is an optimal condition to maximize the mechanical property of additively manufactured alloy without micro-cracks.