• Title/Summary/Keyword: Surface effect

Search Result 16,262, Processing Time 0.048 seconds

Landscape of Erosional Basin in Korea -In case of land-use changes of hills- (우리 나라 침식분지의 경관 -구릉지의 토지이용 변화를 중심으로-)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Erosional basins formed in middle and upper reaches of Korean great rivers have been main life space of local small and middle cities, but previous studies on erosional basins are widely apart from residents' life and are in shortage with the endeavor to elucidate the man and environment relationship. This paper analyzes the factors and the modes of land-use changes of hills in the erosional basin. In this paper four erosional basins with different geological conditions are selected to elucidate the effect of geological factor(Geochang: granite, Chogye: metamorphic rock, Angye: gravelly sedimentary rock, Maseong: limestone). And the distribution of land use on the transverse and longitudinal cross-section map of the hill is described. The landscape of erosional basin is consisted of surrounding mountains, hills, dissected valleys, and incoming river's floodplain. Dissected valleys and incoming river's floodplain were reclaimed early as paddy field and hills have been used as woodland up to recently. Residents have a new appreciation of hills as a productive hill out of a traditional holy space[mountain] by influence of capitalistic thought that 'natural environment is a sort of productive resource'. Population increase is the another pressure of hill reclamation. The modes of landscape changes due to natural conditions are as follow: (1) In Geochang basin with dense tectolineament spacing, the gentle part of hill is used as field, orchard and agricultural-industrial complex site and the steep part is as woodland. (2) Hills in Angye basin with sparse tectolineament spacing are relatively flat because of maintaining a part of original denudational surface, and are used as orchids, field, paddy fields and agricultural-industrial complex site. The dissection valleys between hills are gentle concave and are used as paddy fields. (3) Hills in Maseong basin are wide and flat, and are used as fields, orchards, and agricultural-industrial complex site. (4) Because hills in Chogye basin, a closed type, are weared by affluents and are narrow and short. Hills are used as woodland and wide dissected valleys are reclaimed as paddy fields.

  • PDF

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

Effects of High Temperature on Soybean Physiology, Protein and Oil Content, and Yield (콩에 있어서 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 영향 평가)

  • Lee, Yun-Ho;Sang, Wan-Gyu;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • A recent assessment by the Intergovernmental Panel on Climate Change projected that the global average surface temperature will increase by a value 1.5℃ from 2030 to 2052. In this study, we used a temperature gradient chamber that mimicked field conditions to evaluate the effect of increased air temperature on phenology, yield components, protein content, and oil content, to assess soybean growth. In 2017 and 2018, 'Deawonkong', 'Pungsannamulkong', and 'Deapungkong' cultivars were grown in three temperature gradient chambers. Four temperature treatment groups were established by dividing the rows along temperature regimes: ambient temperature + 1℃ (aT+1), ambient temperature + 2℃ (aT+2), ambient temperature + 3℃ (aT+3), ambient temperature + 4℃ (aT+4). Year, cultivar, and temperature treatments significantly affected yield components and seed yield. In 2017, the flowering stage of 'Deawon' and 'Pungsannamul' cultivars in the aT+4 group was delayed compared to the flowering stage of those in the aT+1 group. In 2018, the flowering stage of 'Deawon' and 'Pungsannamul' was delayed at all temperature gradients, owing to high temperature stress, whereas 'Deapung' was regularly flowering in 2017 and 2018. The duration of the grain filling period was six days shorter in 2018 than in 2017 because of high temperature stress. The total number of pods per ㎡ for 'Deawon' and 'Pungsannamul' was 48.8 and 41.5% lower in 2018 than in 2017, respectively, whereas 'Deapung' increased by 6.3%. The 100-seed weight of 'Deawon' and 'Deapung' was 29.2 and 32.1% lower, respectively. However, 'Pungsannamul' decreased by 14.7%. The protein and oil content was lower during the grain filling period in 2018 than in the same period in 2017 because of high temperature stress. In contrast, the oil content in 'Deapung' was higher in 2018 than in 2017. Our results showed that increased temperature during the grain filling period was significantly and negatively correlated with pod number, 100-seed weight, protein content, and oil content.

Brucite Treatment to Reduce Phosphorus Release from Polluted Sediments (퇴적물로부터 인 용출 저감을 위한 Brucite 처리)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kwon, Hyuck-Jae;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1180-1185
    • /
    • 2006
  • Lab-scale batch experiments using several 25-L transparent acrylic reactors were conducted to develop optimum capping materials that can reduce phosphorus released from polluted sediments. The sediment used in the experiment was very fine clay(8.8 $\Phi$ in mean grain size), and organic carbon($C_{org}$) content was as high as 2%. Four kinds of batches with different capping materials Brucite($Mg(OH)_2$), Sea sand($SiO_2$), Granular-gypsum($CaSO_4{\cdot}2H_2O$), Double layer(brucite+sand), and one control batch were operated for 30 days. Phosphorus fluxes released from bottom sediments in the control batch were estimated to be 14.6 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, while 9.5 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 5.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 4.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, and 3.1 $mg{\cdot}m^{-2}{\cdot}d^{-1}$ in the batch capped with Sea sand, Granular-gypsum, Double layer, and Brucite, respectively. The results obtained from lab-scale batch experiments show that there were 70% reduction of phosphorus for some materials such as Brucite, Double layer(brucite+sand), and whereas sea sand only about 35%. The pH range of surface sediment to which Brucite was applied showed about $8.0{\sim}9.5$ in the weak alkaline state. This effect can prevent liberation of $H_2O$. The addition of gypsum into the sediment can reduce the progress of methanogenesis because of fast early diagenesis and sufficient supply of $SO_4^{2-}$ to the sediments, stimulate the SRB highly. Therefore, the application of Brucite and Gypsum can reduce phosphorus release from the sediment as a result of formation of $Mg_5(OH)(PO_4)_3$, pyrite($FeS_x$), and apatite-mineral.

Application of Reused Powdered Waste Containing Aluminum Oxide on the Treatment of Cr(VI) (6가 크롬 처리를 위한 알루미늄 산화물을 함유한 재생 분말 폐기물의 적용)

  • Lim, Jae-Woo;Kim, Tae-Hwan;Kang, Hyung-Sik;Kim, Do-Son;Kim, Han-Seon;Cho, Seok-Hee;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In this research, the removal capacity of Cr(VI) by the reused powdered wastes (RPW) containing aluminium oxides was studied. As a pre-treatment process for the preparation of calcined wastes, calcination was conducted at $550^{\circ}C$ to remove organic fraction in the raw wastes. In order to study the adsorption trend of Cr(VI) ions from aqueous solutions, the pH-edge adsorption, adsorption kinetic and adsorption isotherm were investigated using a batch reactor in the presence of four different background electrolytes($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$). Cr(VI) adsorption was greatly reduced in the presence of $SO_4\;^{2-}$ and $PO_4\;^{3-}$ over the entire pH range. Meanwhile the inhibition effect by $NO_3\;^-$ and $CO_3\;^{2-}$ was relatively lower than that by $SO_4\;^{2-}$ and $PO_4\;^{3-}$. Cr(VI) adsorption was maximum around pH 4.5 in the presence of $NO_3\;^-$ and $CO_3\;^{2-}$. As the concentration of background electrolytes increased, Cr(VI) adsorption decreased. This result mightly suggests that adsorption between the surface of RPW and Cr(VI) occurs through outer-sphere complex. Cr(VI) adsorption onto the RPW was well described by second-order kinetics. From the Langmuir isotherm at initial pH 3, the maximum adsorbed amount of Cr(VI) onto the RPW was 11.1, 10, 3.3, 5 mg/g in the presence of $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-}$, and $PO_4\;^{3-}$, respectively.

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING (열순환 횟수에 따른 복합레진의 미세누출)

  • Kim, Chang-Youn;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang (청국장 현탁액 오이 엽면처리에 의한 흰가루병 방제효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kwon, Jin-Hyeuk;Kim, Seuk-Chul
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This study was conducted to evaluate control efficacy of a fermented food 'Cheonggukjang' against cucumber powdery mildew caused by Sphaerotheca fuliginea in greenhouse. Sterilized Daepung beans were inoculated with the rice straw as natural inoculum and then incubated for 72 hrs at $42^{\circ}C$ in the household cheonggkjang maker. After 72 hrs of cheonggukjang fermentation, white zymogens were grown on the surface of a sterile Daepung beans. The pH of the 72 hrs fermented soybean was not significantly changed and electrical conductivity was found to increase by about 2 times than before fermentation. The population density of soybean zymogen showed a peak of growth at 60 hrs after fermentation and the concentration of zymogen was $8.2{\times}10^7cfu/ml$. Soybean zymogen form of the colony was divided into three kinds of bacteria and a white and a large colony (WL) was predominant bacteria among those up to 60 hrs of fermentation. To control the cucumber powdery mildew, diluted solutions of cheonggukjang was applied from 6.0% to 30.0% on cucumber leaves and they showed injury symptoms on cucumber leaves in more than 15% of them. However, more than 6.0% diluted cheonggukjang solutions showed more than 77.8% control effect of cucumber powdery mildew at 15 days after treatment. The fermented bacteria of Chenggukjang were well established in the cucumber leaf area at 15 days after treatment. The antifungal activity of 10% diluted cheonggukjang solutions was excellent for four species of plant fungal pathogens, Colletotrichum gloeosporioides, Sclerotinia cepivorum, Rhizoctonia sloani and Phytophthora capsici in the dual culture test. Results indicated that foliar application of Cheonggukjang solution could be used for the control of powdery mildews occurring on organically cultivated cucumber.

Effects of Growth Regulators, Sucrose and Gelling Agents on Callus Growth and Plant Regeneration in Angelica koreana MAX. (강활(羌活)의 캘러스 증식(增殖) 및 식물체(植物體) 재분화(再分化)에 미치는 생장(生長) 조절제(調節劑), sucrose 및 배지(培地) 응고제(凝固劑)의 영향(影響))

  • Lee, Joong-Ho;Lee, Seung-Yeob;Namkoong, Seung-Bak
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.1
    • /
    • pp.78-85
    • /
    • 1996
  • The effects of growth regulators, sucrose and gelling agents were investigated to increase the efficiency of the callus growth and plant regenerarion in tissue culture of Angelica koreana Max. The fresh weight and dry weight of subcultured callus was highest in MS medium supplemented with 1 mg/l 2,4-D. Callus growth was excellent in 2% sucrose, but it was inhibited in propotion to sucrose content. Effect of gelling agents on callus growth was highest on 1.2% agar and 0.4% Gelrite medium, respectively. The browning of callus was protected on the media supplemented with 10 mg/l ABA and 5 or 10 mg/l $AgNO_3$. In the callus induction and growth from the peduncle of immature inflorescence, 2,4-D was more effective than NAA, and the frequency of callus induction was highest as 81.7% in 2 mg/l 2,4-D. Plant was not regenerated from the callus derived from young leaf. Somatic embryos were developed from the surface of callus drived from the peduncle of immature inflorescence in the medium containing 0.5 mg/l 2,4-D, 1 mg/l kinetin, 5 mg/l ABA and 5 mg/l $AgNO_3$. Plants were developed from the matured somatic embryos in the medium supplemented with 0.2 mg/l 2,4-D and 1 mg/l kinetin.

  • PDF