• Title/Summary/Keyword: Surface doping

Search Result 462, Processing Time 0.027 seconds

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

The study of High-efficiency method usign Tri-crystalline Silicon solar cells (삼결정 실리콘 태양전지의 19%변환 효율 최적요건 고찰에 관한 연구)

  • 이욱재;박성현;고재경;김경해;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.318-321
    • /
    • 2002
  • This paper presents a proper condition to achieve high conversion efficiency using PC1D simulator on sri-crystalline Si solar cells. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 $\mu\textrm{m}$, front surface recombination velocity 100 cm/s, sheet resistivity of emitter layer 100 Ω/$\square$, BSF thickness 5 $\mu\textrm{m}$, doping concentration 5${\times}$10$\^$19/ cm$\^$-3/. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %.

  • PDF

The Extraordinary Route of Chlorine Pre-Substitutional Doping on Graphene/Copper Substrate

  • Pham, Viet Phuong;Kim, Kyong Nam;Jeon, Min Hwan;Lin, Tai Zhe;Yeom, Geun Young
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.60-60
    • /
    • 2014
  • By the pre-doping technique on graphene/copper foil, we obtained the pristine sheet resistance and optical transmittance of the chlorine doped-single layer graphene $245{\Omega}/sq$ and 97% at 550 nm wavelength, respectively. X-ray photoelectron spectroscopy revealed that an extremely high Cl coverage of 47.3% of monolayer graphene surface was achieved as the highest surface-coverage graphene doping material ever reported.

  • PDF

A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Rho, Junh-Young;Jeon, BuII;Kim, In-Tae;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성)

  • 김근수;서지윤;이희영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

DOPING EFFICIENCIES OF OXYGEN VACANCY AND SN DONOR FOR ITO AND InO THIN FILMS

  • Chihara, Koji;Honda, Shin-ichi;Watamori, Michio;Oura, Kenjiro
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.876-879
    • /
    • 1996
  • The effect of oxygen vacancy and Sn donor on carrier density for Indium Tin oxide (ITO) and Indium oxide (InO) films has been investigated. Hot-cathode Penning discharge sputtering (HC-PDS) in the mixed gasses of argon and oxygen was applied to fabricate the ITO and InO films. Density of oxygen vacancy was estimated using a high-energy ion beam technique. The electrical properties of the films such as resistivity, carrier density and mobility were estimated by Van der Pauw method. The doping efficiency of oxygen vacancy could be obtained from the relationship between oxygen vacancy and carrier density. The doping efficiency of oxygen vacancy for ITO films resulted in a quite small value. Comparing the doping efficiencies of ITO and InO films, the effect of Sn donor on carrier density was also discussed.

  • PDF

A Study on Emitter layer by Plasma Doping for Crystalline Silicon Solar Cells (플라즈마 도핑을 이용한 결정질 태양전지 에미터층 형성 연구)

  • Yu, Dong-Yeol;Roh, Si-Cheol;Choi, Jeong-Ho;Kim, Jeong-Hwan;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.61-64
    • /
    • 2011
  • In order to grow the crystalline solar cells industry continuously, development of alternate low-cost manufacturing processes is required. Plasma doping system is the technique for introducing dopants into semiconductor wafers in CMOS devices. In photovoltaics, plasma doping system could be an interesting alternative to thermal furnace diffusion processes. In this paper, plasma doping system was applied for phosphorus doping in crystalline solar cells. The Plasma doping was carried out in 1~4 KV bias voltages for four minutes. For removing surface damage and formation of pn junction, annealing steps were carried out in the range of $800{\sim}900^{\circ}C$ with $O_2$ ambient using thermal furnace. The junction depth in about $0.35{\sim}0.6{\mu}m$ range have been achieved and the doping profiles were very similar to emitter by thermal diffusion. So, It could be confirmed that plasma doping technique can be used for emitter formation in crystalline solar cells.

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Phosphorus doping effect on $Si_{0.8}Ge_{0.2}$ epitaxial growth by LPCVD (저압 CVD에 의한 $Si_{0.8}Ge_{0.2}$ epitaxial growth에 대한 Phosphorus doping 효과)

  • Lee, Cheal-Jin;Eom, Moon-Jong;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.314-316
    • /
    • 1997
  • We have studied the epitaxial growth and electrical properties of $Si_{0.8}Ge_{0.2}$, films on Si substrates at $550^{\circ}C$ by LPCVD. In a low $PH_3$, partial pressure region such as below 1.25 mPa, the phosphorus doping concentration increased proportionally with increasing $PH_3$ partial pressure while the deposition rate and the Ge fraction x were constant. In a higher $PH_3$ partial pressure region, the phosphorus doping concentration and the deposition rate decreased, while the Ge fraction slightly increased. The dependence of P incorporation rate on the $PH_3$ partial pressure was similar to the phosphorus doping concentration. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_4$ adsorption/reaction and the $GeH_4$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_4$ than on $GeH_4$. In a higher $PH_3$ partial pressure region, the deposition is largely controlled by surface coverage effect of phosphorus atoms.

  • PDF