• Title/Summary/Keyword: Surface creep

Search Result 165, Processing Time 0.026 seconds

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

A Fracture Mechanic Study on Life Prediction of Surface Cracks at Elevated Temperature (고온화 표면균열의 수명예측에 관한 파괴역학적 연구)

  • Chang-Min,Suh;Young-Ho,Kim;Bung-Ho,Son;Sang-Yeub,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.100-106
    • /
    • 1990
  • Microcracking of type 304 stainless steel at $593^{\circ}C(1,100^{\circ}F)$ has been studied, in particular, initiation, growth, and coalescence of fatigue and creep microcracks on smooth specimens and small notch specimens via surface replicas and photomicrographs. Quantitative information, such as, initiation period, growth, and coalescence behavior, statistical distributions of crack length, density of cracks, distribution patterns and crack growth properties, were obtained. From this study, the fracture process, fatigue life, and creep life prediction characterized by the growth of surface microcracks have been analysed by a new approach unifying the conventional approaches based on the final fracture of materials with the fracture mechanics approach. Knowledge of these parameters is critical for the application of fracture mechanics to fatigue and creep life assessment, and the damage evaluation of structures at elevated temperature.

  • PDF

Creep Behaviours of 9% Ni Alloy (Ni 합금강의 크리프 거동)

  • Hwang, Kyung-Choong;Kim, Jong-Bae;Kang, Sung Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Purpose: To observe the high temperature creep test and the fracture surface of the samples of 9% Ni alloy steel generally used for all kinds of mahine parts and predict the durability of that by determining a constant of C with a Larson-Miller variable. Methods: The equipment of this test was made into lever-beam style designed by Andrade and F. Garofalo et al.. The condition of creep test was set under 16 kinds of conditions after fixing 4 kinds of temperature condition and 4 kinds of stress condition to check how it effects the samples. Results: The temperature of creep test was increased, the stress index (n) of creep deformation was gradually decreased from 3.97 to 3.55. The activation energy of creep deformation was decreased from 90.39 to 83.64 kcal/mol when the stress was increased. A constant of C value by calculation of larson-Miller variable was about 22 and if temperature for use is suggested, the durability could be calculated. Conclusions: By analyzing the fracture phenomenon and suggesting the observation result of the fracture surface of the samples and creep test of 9% Ni alloy steel, the basic design data for the practical use of accessories in the field of equipment could be constructed and used to predict the durability of the equipment.

  • PDF

Study on the Characteristics of the Slow-moving Landslide (Landcreep) in the Sanji Valley of Jinju (진주시 산지골 유역내 땅밀림지 특성에 관한 연구)

  • Park, Jae-Hyeon;Kim, Seon Yeop;Lee, Sang Hyeon;Kang, Han Byoel
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.115-124
    • /
    • 2022
  • This study was conducted to obtain basic data that could help prevent damage caused by slow-moving landslides (land-creep). Specifically, the geological, topographic, and physical characteristics of land-creep were analyzed in Jiphyeon-myeon, Jinju-si. The first and second analyzed land-creeps occurred in 1982 and 2019, respectively. The area damaged in the second land-creep was about 11.5-fold larger than that damaged in the first land-creep. The dominant constituent rock in the land-creep area was sedimentary rock, which seems to be weakly resistant to weathering. The areas that collapsed due to land-creep were related to the presence of separated rocks between the bedding plane in the estimated activity surface over the slope direction and the vertically developed joint surface. Thus, surface water and soil debris were introduced through the gaps of separated rocks. Additionally, the areas collapsed due to the combination of the bedding plane and joint surface shale and sandstone showed an onion structure of weathered outcrop from the edge to inner part caused by weathering from ground water. Consequently, core stones were formed. The study area was a typical area of land-creep in a mountain caused by ground water. Land-creep was classified into convex areas of colluvial land-creep. The landslide-risk rating in the study area was classified into three and five classes. The flow of ground water moved to the northeast and coincided with the direction of the collapse. Soil bulk density in the collapsed area was lower than that in ridge area, which was rarely affected by land-creep. Thus, soil bulk density was affected by the soil disturbance in the collapsed area.

Assessment of long-term behaviour of a shallow tunnel in clay till

  • Wang, Z.;Wong, R.C.K.;Heinz, H.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.107-123
    • /
    • 2010
  • Ground settlements and pore pressure changes were monitored around a shallow tunnel constructed in clay till during the excavation and primary lining installation. The settlements above the tunnel continued to develop for up to 100 days after the primary lining installation. Triaxial compression tests were carried out to estimate the short-term and long-term deformation characteristics of the till. Numerical simulation was conducted to history match the field measurements, and thus, to quantify the settlements induced by ground stress relief, consolidation and creep. It was found that the surface settlements due to ground stress relief, consolidation and creep are 17, 12 and 71% of total settlement (about 44 mm), respectively. In addition, early installation of rigid concrete lining could be an effective means to reduce the settlement due to creep.

A Study of Creep Characteristics by Conditions of Driving and Friction (구동과 마찰조건에 따른 차륜의 크립 특성 연구)

  • Kim, Beom-Soo;Kim, Kwan-Ju;Park, Jin-Kyu;Kim, Sang-Soo;Kim, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.479-482
    • /
    • 2007
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Creep and squeal noise generating mechanism are influenced by friction conditions of attack angle, loading force, driving velocity and surface roughness. Squeal noise phenomena has been examined under the laboratory condition by the model rig. Creep characteristics and squeal noise were observed by varying relative velocity of the wheel with respect to the rail and friction coefficient.

  • PDF

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.

Static Creep Characteristics of AI-10wt% TiCp Composites (Al-10wt% TiCp복합재료의 정적 크립특성)

  • Rhim, J.K.;Park, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.159-165
    • /
    • 1993
  • Creep tests of the TiC particulate reinforced Al composite have been conducted in the temperature ranges from 200 to $500^{\circ}C$. The steady-state cree rate of the composite depended strongly on the temperature and ap' plied stress. The stress exponent for the steady state creep rate of the composites was approximately 17.5 and the activation anergy was calculated to be 390KJ/mol. The steady-state creep equation could be written as $\acute{\varepsilon}_{ss}$ $$(s^{-1})=1.5{\times}10^{-9}\;{\sigma}^{17.5}\exp(-390000/RT)$$. Fracture surface examination showed that the fracture mode of the particulate reinforced composite was ductile by plastic tearing of the aluminum matrix and TiC particle interfaces were offered as sites for crack.

  • PDF

Creep & Tensile Properties of Thermally Grown Alumina Films (열 생성 알루미나 박막의 크리프 및 인장 특성)

  • Ko, Gyoung-Dek;Sun, Shin-Kyu;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.665-670
    • /
    • 2007
  • Alpha-phase alumina TGO(Thermally Grown Oxide) forms on the interface between zirconia top coat and bond coat of thermal barrier coating system for superalloys during exposure to high temperature over $1000^{\circ}C$. It is known to provide a good protection against hot corrosion and to cause surface failure such as rumpling and cracking due to difference in thermal expansion coefficient from the substrate metal and the lateral growth. Consequently, mechanical properties of the alumina TGO at the high temperature are the key parameters determining the integrity of TBC system. In this work, by using Fecralloy foils as the alumina forming substrate, creep tests and tensile tests have been performed with various TGO thicknesses$(h=0{\sim}4{\mu}m)$ and yttrium contents(0, 200ppm) at $1200^{\circ}C$. Displacement-time curves and load-displacement curves for each TGO thickness(h=1,2,..) were measured from the creep and tensile tests, respectively, and compared with the curves without TGO thickness(h=0). As the result, the intrinsic tensile and creep properties of TGO itself were determined.