• 제목/요약/키워드: Surface cracks

검색결과 1,291건 처리시간 0.035초

비균질재료의 3차원 균열에 대한 응력확대계수 해석 (Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

비균질재료의 표면균열에 대한 응력확대계수 해석 (Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

5083-H113 A1 합금의 피로균열진전거동에 미치는 균열형태의 영향 (Influence of crack geometry on fatigue crack growth behavior in 5083- H113 aluminium alloy)

  • 김정규;신용승;윤의박
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.781-789
    • /
    • 1988
  • 본 연구에서는 용접성이 좋고 강도도 적당하며 부식에 대한 저항성이 좋아 해 양구조물 및 용접구조용재로서 널리 사용되고 있는 5083-H113 Al 합금을 준비하고 이 재료의 균열형태에 따른 피로균열진전거동을 밝히기 위하여 관통균열과 포면균열의 진 전거동에 미치는 응력비의 영향을 균열닫힘과 함께 검토하였다.

Extraction of Characteristics of Concrete Surface Cracks

  • Ahn, Sang-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.126-130
    • /
    • 2007
  • This paper proposes a method that automatically extracts characteristics of cracks such as length, thickness and direction, etc., from a concrete surface image with image processing techniques. This paper, first, uses the closing morphologic operation to adjust the effect of light extending over the whole concrete surface image. After applying the high-pass filtering operation to sharpen boundaries of cracks, we classify intensity values of the image into 8 groups and remove intensity values belong to the highest frequency group among them for the removal of background. Then, we binarize the preprocessed image. The auxiliary lines used to measure cracks of concrete surface are removed from the binarized image with position information extracted by the histogram operation. Then, cracks broken by the removal of background are extended to reconstruct an original crack with the $5{\times}5$ masking operation. We remove unnecessary information by applying three types of noise removal operations successively and extracts areas of cracks from the binarized image. At last, the opening morphologic operation is applied to compensate extracted cracks and characteristics of cracks are measured on the compensated ones. Experiments using real images of concrete surface showed that the proposed method extracts cracks well and precisely measures characteristics of cracks.

고온하 304 스테인리스철의 표면규열의 성장거동에 관한 실험적 연구 (An Experimental Study on the Growth Behavior of Multi-Surface-Cracks in Type 304 Stainless Steel at Elevated Temperature)

  • 서창민;신형섭;황남성;정대윤
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.63-72
    • /
    • 1995
  • The crack which is discovered in various structures and machine elements is multi-cracks. Multi-cracks may cause serious problems because they grow individually, and coalesce into one and it leads to fracture. Fatigue tests have been carried out to study the growth and coalescence behavior of multi-surface-cracks initiated at the semicircular surface notch in type 304 stainless steel at elevated temperature. The results are as follows; When multi-surface-cracks are lying on the surface of material, the major surface crack has greater influence on the fatigue life than the subcracks. The aspect ratio of multi-surface-cracks is lower than that of single crack because of the interaction and coalescence of surface cracks. Crack growth shape turns to semiellipse from the semicircle notch. After coalescence, the surface crack length increases rapidly, and it leads to fracture. Further, the slope transition of Paris law was found in the da/dN-$\Delta$K$_1$ plots.

  • PDF

연주공정에서 신경망의 분류 알고리즘을 이용한 횡방향 표면크랙 예측 (Prediction of Transverse Surface Crack using Classification Algorithm of Neural Network in Continuous Casting Process)

  • 노용훈;조동혁;김동현;서석;이주동;이영석
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.100-106
    • /
    • 2018
  • In the continuous casting process, the incidence of transverse surface cracks on the piece may occur by multiple and diverse variables. It is noted that mathematical models may predict only the occurance of the transverse surface cracks, but can require a lot of time (more than three days) to produce a result with this process. This study applied neural networks to predict whether the cracks on the piece surface occurs or does not occur. The computation time was shortened to three minutes, making it applicable to an on-line program, which predicts the non-cracks or cracks of the piece surface in the actual continuous casting process. In addition, the operating conditions to prevent the occurrence of the transverse surface cracks, using decision boundaries were also suggested.

콘크리트 바닥 시험체의 크기가 SL재의 균열에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(I) - (Evaluation on Crack in Self-leveling Material and Investigation about Influence of Specimen Size - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part I) -)

  • 김두호;최수경
    • 한국건축시공학회지
    • /
    • 제7권2호통권24호
    • /
    • pp.99-106
    • /
    • 2007
  • The purpose of this study presents in Relations between cracks in self-leveling material and quality of floor groundwork surface are experimentally examined. As the first stage, the experiment to observe cracks in self-leveling material constructed on floor groundwork made from various kinds of concrete was carried. As a result, following basic findings were obtained. First, observation of cracks should be continued until an increase in width of cracks stop, without constructing any finishing material. Second, degree of cracks may be indicated quantitatively by the product of length and width. Finally, Cracks and separation is not be influenced by specimen size. Based on these findings, the method of predicting cracks by evaluating surface layer quality of floor groundwork will be established.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

A Study on the Recognition of Concrete Cracks using Fuzzy Single Layer Perceptron

  • Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.204-206
    • /
    • 2008
  • In this paper, we proposed the recognition method that automatically extracts cracks from a surface image acquired by a digital camera and recognizes the directions (horizontal, vertical, -45 degree, and 45 degree) of cracks using the fuzzy single layer perceptron. We compensate an effect of light on a concrete surface image by applying the closing operation, which is one of the morphological techniques, extract the edges of cracks by Sobel masking, and binarize the image by applying the iterated binarization technique. Two times of noise reduction are applied to the binary image for effective noise elimination. After the specific regions of cracks are automatically extracted from the preprocessed image by applying Glassfire labeling algorithm to the extracted crack image, the cracks of the specific region are enlarged or reduced to $30{\times}30$ pixels and then used as input patterns to the fuzzy single layer perceptron. The experiments using concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the fuzzy single layer perceptron was effective in the recognition of the extracted cracks directions.

2개의 대칭표면구열의 구열형상변화 예측 (Prediction of the crack aspect change in twin surface cracks)

  • 최용식;김재원
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.65-75
    • /
    • 1992
  • An analytical scheme for predicting the crack aspect pattern of materials which contain twin surface cracks was developed. Fatigue tests were performed on twin surface cracked PMMA plate specimens to obtain the interaction factor accounting for the interference effect of adjacent cracks. Here, the interaction factor is defined as the ratio of the stress intensity factor for twin surface cracks to that for a single surface crack. From the analysis of the fatigue test result, the interaction factor was presented as the ninth-order polynomial expression having a function of dimensionless crack spacing ratio. Then the polynomial expression was incorporated into the prediction program of the crack aspect pattern for twin surface cracked materials. And, the interaction effect and the coalescence condition of adjacent cracks were simplified in the newly developed prediction scheme of the crack aspect pattern. The predicted crack growth pattern using the prediction scheme was compared with test data from PMMA specimen. The predicted pattern agreed well with the test data.

  • PDF