• Title/Summary/Keyword: Surface concentration

Search Result 6,117, Processing Time 0.033 seconds

The Fatigue Behavior by Variety of Crack Length of Surface Cracked Plate with Stress Concentration Part (응력집중부를 갖는 표면균열재의 균열길이 변화에 따른 피로거동)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 1995
  • Surface defects in structural members are apt to be origins of fatigue cracks growth, which may cause serious failure of whole structures. Most structure has a part where stress concentrates such as welded joints, corner parts, etc. And then, analysis on crack growth and penetration from these defects, therefore, is one of the most important subjects for the reliability of LBB design. The present paper has performed an experimental and analysis on the fatigue crack propagation by variety in crack length of surface cracked plate with stress concentration part. The crack growth behavior can be explained quantitatively by using Newman-Raju equation and the stress partitioning method proposed by ASME B&P Code Sec. XI. The stress concentration factor $K_t$ has affected on the crack growth. The crack growth after penetration depends upon the initial front side crack length.

  • PDF

나노 세리아 슬러리에 첨가된 연마입자와 첨가제의 농도가 CMP 연마판 온도에 미치는 영향

  • 김성준;강현구;김민석;박재근
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.122-125
    • /
    • 2003
  • We investigated the effect of the abrasive and additive concentrations in Nano ceria slurry on the pad surface temperature under varying pressure through chemical mechanical polishing (CMP) test using blanket wafers. The pad surface temperature after CMP increased with the abrasive concentration and decreased with increase of the additive concentration in slurries for the constant down pressure. A possible mechanism is that the additive adsorbed on the film surface during polishing decreases the friction coefficient, hence the pad surface temperature gets lower with increase of the additive concentration. This difference of temperature was more remarkable for the higher concentration of abrasives. In addition, in-situ measurement of spindle motor was carried out during oxide and nitride polishing. The averaged motor current for oxide film was higher than that for nitride film, which means the higher friction coefficient.

  • PDF

Anodic oxidation behavior of AZ31 Mg alloy in aqueous solution containing various NaF concentrations

  • Moon, Sungmo;Kwon, Duyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.4
    • /
    • pp.196-201
    • /
    • 2022
  • This paper deals with anodic oxidation behavior of AZ31 Mg alloy in aqueous solutions containing various NaF concentrations from 0.01 M to 1 M. Three different voltage-time curves and anodic oxide formation behaviors appeared with concentration of NaF in deionized water. When NaF concentration is lower than 0.02 M, the voltage of AZ31 Mg alloy increased linearly and then reached a steady-state value more than 200 V, and large size pits and thin oxide layer were formed. When NaF concentration is between 0.05 M and 0.1 M, the voltage of AZ31 Mg alloy showed large periodic fluctuations of about 30 ~ 50 V around more than 200 V and large number of small particles were observed. If NaF concentration is higher than 0.2 M, PEO films can be formed without visible arcs under solution pH 6.5 ~ 7.5 by F- ions without help of OH- ions.

Effect of Cementite Precipitation on Carburizing Behavior of Vacuum Carburized AISI 4115 Steel (진공침탄에 의한 AISI 4115강의 침탄 거동에 미치는 세멘타이트 석출의 영향)

  • Gi-Hoon Kwon;Hyunjun Park;Yoon-Ho Son;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.402-411
    • /
    • 2023
  • In order to examine the effect of cementite precipitated on the steel surface on the carburizing rate, the carburizing process was carried out at various boost times to measure the mass gain and carbon flux, phase analysis and carbon concentration analysis were performed on the surface of the carburized specimen. In the case of the only boost type, the longer the boost time, the more the mass gain by the diffused carbon follows the parabolic law and tends to increase. In particular, as the boost time increased, the depth of cementite precipitation and the average size of cementite on the steel surface increased. At a boost time of 7 min, the fraction of cementite precipitated on the surface is 7.32 vol.%, and the carburizing rate of carbon into the surface (surface-carbon flux) is about 17.4% compared to the calculated value because the area of the chemical (catalyst) where the carburization reaction takes place is reduced. The measured carbon concentration profile of the carburized specimen tended to be generally lower than the carbon concentration calculated by the model without considering precipitated cementite. On the other hand, in the pulse type, the mass gain by the diffused carbon increased according to the boost time following a linear law. At a boost time of 7 min, the fraction of cementite precipitated on the surface was 3.62 vol.%, and the surface-carbon flux decreased by about 4.1% compared to the calculated value. As a result, a model for predicting the actual carbon flux was presented by applying the carburization resistace coefficient derived from the surface cementite fraction as a variable.

Evaluation of One-particle Stochastic Lagrangian Models in Horizontally - homogeneous Neutrally - stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 라그랑지안 단일입자 모델의 평가)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.397-414
    • /
    • 2003
  • The performance of one-particle stochastic Lagrangian models for passive tracer dispersion are evaluated against measurements in horizontally-homogeneous neutrally-stratified atmospheric surface layer. State-of-the-technology models as well as classical Langevin models, all in class of well mixed models are numerically implemented for inter-model comparison study. Model results (far-downstream asymptotic behavior and vertical profiles of the time averaged concentrations, concentration fluxes, and concentration fluctuations) are compared with the reported measurements. The results are: 1) the far-downstream asymptotic trends of all models except Reynolds model agree well with Garger and Zhukov's measurements. 2) profiles of the average concentrations and vertical concentration fluxes by all models except Reynolds model show good agreement with Raupach and Legg's experimental data. Reynolds model produces horizontal concentration flux profiles most close to measurements, yet all other models fail severely. 3) With temporally correlated emissions, one-particle models seems to simulate fairly the concentration fluctuations induced by plume meandering, when the statistical random noises are removed from the calculated concentration fluctuations. Analytical expression for the statistical random noise of one-particle model is presented. This study finds no indication that recent models of most delicate theoretical background are superior to the simple Langevin model in accuracy and numerical performance at well.

Effects of the Changes of Current Density and Additive Concentration on Ni Thin Films in Ni Sulfamate-chloride Electrodeposition Baths (Ni Sulfamate-chloride 전기도금 용액에서 전류밀도와 첨가제의 농도 변화가 Ni 박막에 미치는 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.62-70
    • /
    • 2018
  • Sulfamate plating solution containing a small amount of chloride bath was fabricated to study the properties of the electrodeposited Ni thin films. Effects of the changes of current density and additive concentration on current efficiency, residual stress, surface morphology and microstructure of Ni thin films electrodeposited from Ni sulfamate-chloride baths were investigated. The current efficiency was measured to be more than about 95%, independent of the changes of current density and saccharin concentration in the baths. Residual stress of Ni thin film was appeared to be the compressive stress modes in the range of $5{\sim}30mA/cm^2$ current density. Maximum compressive stress was observed at the current density of $10mA/cm^2$. Compressive stress values of Ni thin/thick films were increased to be about -85~-100 MPa with increasing saccharin concentration from 0 to 0.0195 M(4 g/L). Surface morphology was changed from smooth to nodule surface appearance with increasing the current density. Smooth surface morphology of Ni thin films electrodeposited from the baths containing saccharin was observed, independent of the saccharin concentration. Ni thin/thick films consist of FCC(111), FCC(200), FCC(220), FCC(311) and FCC(222) peaks. It was revealed that the FCC(200) peak of Ni thin films is the preferred orientation in the range of $5{\sim}30mA/cm^2$ current density. The intensity of FCC(200) peak was gradually decreased and the intensity of FCC(111) peak was increased with increasing saccharin concentration in the baths.

Surface Properties of Glutathione Layer Formed on Gold Surfaces (금 표면 위에 형성된 글루타싸이온 층의 표면 물성)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.379-384
    • /
    • 2012
  • It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.

Variability of Surface Chlorophyll Concentration in the Northwest Pacific Ocean (북서태평양의 표층엽록소 변동성)

  • Park, Ji-Soo;Suk, Moon-Sik;Yoon, Suk;Yoo, Sin-Jae
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.277-287
    • /
    • 2008
  • We collected information on seasonal and interannual variability of surface chlorophyll a concentration between 1997-2007 from the Northwest Pacific Ocean. Satellite data were used to acquire chlorophyll a and sea surface temperature from six regions: East Sea/Ulleung Basin, East China Sea, Philippin Sea, Warm Pool region, Warm Pool North region, and Warm Pool East region. Mixed layer depth (MLD) was calculated from temperature profiles of ARGO floats data in four of the six regions during 2002-2007. In the East Sea/Ulleung Basin, seasonal variability of chlorophyll a concentration was attributed to seasonal change of MLD, while there was no significant relationship between chlorophyll a concentration and MLD in the Warm Pool region. Interannual anomaly in sea surface temperature were similar among the East Sea, East China Sea, Philippin Sea, and Warm Pool North region. The anomaly pattern was reversed in the Warm Pool East region. However, the anomaly pattern in the Warm Pool region was intermediate of the two patterns. In relation to chlorophyll a, there was a reversed interannual anomaly pattern between Warm Pool North and Warm Pool East, while the anomaly pattern in the Warm Pool region was similar to that of Warm Pool North except for the El $Ni\tilde{n}o$ years (1997/1998, 2002/2003, 2006/2007). However, there was no distinct relationship among other seas. Interestingly, in the Warm Pool and Warm Pool East regions, sea surface temperature showed a pronounced inverse pattern with chlorophyll a. This indicates a strong interrelationship among sea surface temperature-MLD-chlorophyll a in the regions. In the Warm Pool and Warm Pool East, zonal distribution of chlorophyll a concentration within the past 10 years has shown a good relationship with sea surface temperature which reflects ENSO variability.

Analysis of Cu CMP according to Corrosion Inhibitor Concentration (Cu CMP에서 Corrosion Inhibitor에 의한 연마 특성 분석)

  • Joo, Suk-Bae;Lee, Hyun-Seop;Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.113-113
    • /
    • 2008
  • Cu CMP (Chemical Mechanical Planarization) has been used to remove copper film and obtain a planar surface which is essential for the semiconductor devices. Generally, it is known that chemical reaction is a dominant factor in Cu CMP comparing to Silicon dioxide CMP. Therefore, Cu CMP slurry has been regarded as an important factor in the entire process. This investigation focused on understanding the effect of corrosion inhibitor on copper surface and CMP results. Benzotriazole (BTA) was used as a corrosion inhibitor in this experiment. For the surface analysis, electrochemical characteristics of Cu was measured by a potentiostat and surface modification was investigated by X-ray photoelectron spectroscopy (XPS). As a result, corrosion potential (Ecorr) increased and nitrogen concentration ratio on the copper surface also increased with BTA concentration. These results indicate that BTA prevents Cu surface from corrosion and forms Cu-BTA layer on Cu surface. CMP results are also well matched with these results. Material removal rate (MRR) decreased with BTA concentration and static etch rate also showed same trend. Consequently, adjustment of BTA concentration can give us control of step height variation and furthermore, this can be applicable for Cu pattern CMP.

  • PDF

Variations of Surface Ozone Concentration by Vertical Downward Mixing of Ozone in the Residual Layer of the Atmospheric Boundary Layer at the Busan Coastal Area (부산연안역의 대기경계층내 잔류 오존의 연직하향혼합에 의한 지표 오존농도의 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.417-422
    • /
    • 2001
  • The vertical structure of atmosphere was observed In investigate the variation of surface ozone concentration by vertical downward mixing of residual ozone in the atmospheric boundary layer at the Busan coastal area. Airsonde and pilot balloon measurements were made at Gamcheondong and the Kimhae airport for April 26~27, 1996. The vertical potential of potential temperature showed a residual layer between 510m and 1800m from 2100LST April 26 to 0900LST April 27. The downward mixing of ozone in the residual layer of the atmospheric boundary layer was confirmed from vertical profile of mixing ratio near 600m in the morning. The thickness of the sea breeze layer was 900m at 1500LST April 26. Thereafter, it become to be lowered with time A low level jet was measured near 900m at 0300LST on April 27 from a pibal measurement. Early morning sharp increase of surface ozone concentration at the Busan coastal area was caused by vertical downward mixing of ozone concentration rather than by photochemical reaction In the atmospheric boundary layer.

  • PDF