• Title/Summary/Keyword: Surface concentration

Search Result 6,123, Processing Time 0.034 seconds

Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste (알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가)

  • Ahn, Hae Young;Park, Cheol Woo;Park, Hee Mun;Song, Ji Hyeon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

Sensory Characteristics of Doenjang Supplemented with Sage Powder as Assessed by Response Surface Methodology (반응표면분석법을 이용한 세이지분말 첨가 된장의 관능적 특성)

  • Kim, Mi-Lim;Jeong, Ji-Suk
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.243-249
    • /
    • 2010
  • We examined sensory characteristics to obtain the optimal conditions for doenjang preparation, using response surface methodology (RSM) to evaluate addition of sage (Salvia officinalis L.) powder to, and the salinity of, doenjang. We aimed to develop a new variety of doenjang linking traditional Korean doenjang preparation with the physiological functionalities of sage. Color values were 1.20-2.70, flavor values 1.60-3.20, taste values 1.40-3.50, texture scores 1.60-3.50, and overall preference values 1.60-3.05, with the differences depending on experimental variations in preparation. Analysis of a reaction surface formed by a quadratic regression equation found that the R-squared values for overall preference, texture, taste, flavor,and color were 0.11-0.41, thus relatively low and insignificant, being less than 5%. In sensory tests, the color value was 2.91 when the salinity was 21.50%, and sage powder was added to a concentration of 3.10% (all w/w). The flavor score was 3.21 when the salinity was 22.52% and sage powder concentration was 3.68%. The taste value was 2.87 when the salinity was 8.62% and sage powder concentration was 4.46%. The texture score was 2.88 when the salinity was 8.00% and sage powder concentration was 6.06%. The overall preference score was 2.74 when the salinity was 20.40% and sage powder concentration was 2.66%. Although this preparation method is new to Koreans, doenjang with added sage was associated with higher sensory scores than traditional doenjang, confirming the possibility of development of a novel functional doenjang.

Effects of Pulsed Nd:YAG Laser Irradiation and Fluoride Compound Applicatin on Acid Resistance of Bovine Teeth (Pulsed Nd:YAG 레이저 조사와 불소화합물 도포가 치아 내산성에 미치는 영향)

  • An-Hee Lee;Woo-Cheon Kee
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.2
    • /
    • pp.429-447
    • /
    • 1995
  • This study was designed to determine the most effective concentration of fluoride and levels of laser irradiation for the remineralization of decayed teeth. After irradiation with a pulsed Nd:YAG laser and the topical application of fluoride, phosphate and fluoride concentration in enamel were measured. And then the changes on surface enamel using an scanning electron microscope were observed. Samples by extraction healthy, permanent, mandibular bovine teeth with no caries were obtained. Among them 371 healthy samples were selected and artificial carious lesions were made. 20 samples were assigned to each experimental group. After irradiation with a pulsed Nd:YAG laser with total energy densities of 10J/$\textrm{cm}^2$, 20J/$\textrm{cm}^2$ for each group. On the teeth, 2% NaF, 1.9% NH4F, 1.6% TiF4 Elmex gel(amine fluoride) and 1.23% APF gel were applied. After pH circulatory procedures, concentrations of fluoride with and Ionalyzer (Orion Research, Model 901, USA) and phosphates with an Uv/V is spectrophotometer (Uvikon 860, Kontrom Co, Switzerland) were measured. By etching the teeth in layers and measuring fluoride concentrations, a profile of fluoride penetration according to depth could be developed. And also the changes on the surface of the enamel using an electron scanning microscope were observed. The comparative analysis yielded the following results : 1. Phosphate concentration was low in all groups compared with the control group except for teeth treated Elmex gel, irradiated with 10J/$\textrm{cm}^2$ and 30J/$\textrm{cm}^2$ energy densities. Teeth treated with APF gel and 30J/$\textrm{cm}^2$ irradiation gad the lowest phosphate concentration. 2. Among all groups, fluoride concentrations in tooth enamel were highest in APF gel and NaF groups irradiated at 30J/$\textrm{cm}^2$. The APF gel group had the highest fluoride concentrations across all energy densities. 3. In the APF gel group, and the NaF group, the greater the energy density of the laser, the higher the fluoride concentrations in the enamel. 4. In all groups, the concentration of fluoride in the enamel by depth tended to decrease with depth. 5. Under the scanning electron microscope, under the condition of irradiation with 20J/$\textrm{cm}^2$, enamel crack was detected for the first time. In the NH4F group, spherical deposits were found on the surface of the enamel, and in the TiF4 group the surface of enamel was covered with an irregular, thin membranous mass in places. In the APF gel and NaF groups irradiated with 10J/$\textrm{cm}^2$, spherical and irregular particles covered the teeth. When these groups were irradiated at 20J/cm2, they were covered with amorphous crystals. These results suggest that one could obtain more effective anticariogenic effects without damage to teeth when less than 20J/$\textrm{cm}^2$ energy densities and APF gel are used.

  • PDF

Extinguishing Concentration of Inert Gases in Heptane Pool Fires (헵탄 풀화재에서 불활성기체 소화농도)

  • Jung, Tae-Hee;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • The coflow velocity effect on the minimum extinguishing concentration(MEC) was investigated experimentally in heptane cup-burner flames. Various inert gases($N_2$, Ar, $CO_2$, He) were added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the MECs were increased with increasing coflow velocity for most inert gases except helium, but the higher coflow velocity induced the lower burning rates of heptane. This indicated that the increase of coflow velocity resulted in the decrease of fuel velocity evaporated from fuel surface, and hence the stain rate on the reaction zone was also decreased. In the case of helium as a additive, the extinguishing concentration was independent of the coflow velocity because the heat conductivity was ten times larger than the other inert gases and flow effect by a strain rate might be compensated for heat loss to the surroundings.

Optimization for Roast Flavour Formation of Platycodon grandiflorum Tea (도라지차의 구수한 향미 발현 최적화)

  • 이기동;주길재;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.752-757
    • /
    • 2000
  • Response surface methodology was used to optimized soaking and roasting conditions and monitor organoleptic properties of roasted Platycodon grandiflorum tea. In soaking and roasting processes based on the central composite design with variations in threonine/sucrose concentration for soaking of Platycodon grandiflorum, roasting temperature and roasting time, coefficients of determination ($R^2$) of the models were above 0.86(p<0.05) in organoleptic properties. The maximum conditions predicted for each corresponding organoleptic properties of roasted Platycodon grandiflorum tea were 1.64% threonine concentration, 137.83$^{\circ}C$ and 27.76 min in aroma, 1.46% threonine concentration, 136.1$0^{\circ}C$ and 25.19 min in taste, and 1.39% threonine concentration, 136.44$^{\circ}C$ and 29.05 min in overall flavour. The optimum condition ranges for organoleptic properties of roasted Platycodon grandiflorum tea were soaking in 1.40~1.64% threonine concentration, and roasting at 136.10~137.9$0^{\circ}C$ for 25.19~29.00 min.

  • PDF

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

Optimization for Chia Seed Antioxidative Activity of Solvent Extraction Using the Response Surface Methodology (반응표면 분석법을 이용한 치아씨 항산화 활성 추출의 최적화 조건)

  • Han, Kee-Young;Choi, Jin-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.228-236
    • /
    • 2016
  • The purpose of this study was to determine the optimum conditions of solvent extraction type and solvent concentration (60, 70, 80%, v/v), extraction time (30, 80, 130 mins) and extraction temperature (10, 15, $20^{\circ}C$) in order to increase the antioxidant activity of the chia seed. The total polyphenol content and DPPH radical scavenging activity was measured by using response surface methodology (RSM) to establish the optimal conditions. Using ethanol and methanol extractions at extraction concentrations of 60%, and time and temperature of 130 mins and $20^{\circ}C$, the maximum total polyphenol content was 871.00 mg% ($R^2=0.9507$) and 557.70 mg% ($R^2=0.9784$) for ethanol and methanol extraction respectively. Using the same extraction conditions, the maximum level of DPPH radical scavenging activity was 72.14% ($R^2=0.9675$) and 52.79% ($R^2=0.9524$) for ethanol and methanol extraction respectively. The results indicate that ethanol extracts showed a higher antioxidant activity than methanol extracts. The ethanol extraction conditions of response surface analysis (RSA) were affected more by ethanol concentration than by extraction time or temperature. In contrast, the methanol extraction conditions of response surface analysis (RSA) were affected more by extraction time. Based on the RSM, the optimum ethanol extraction conditions were the following: extraction concentration, 63%: time, 100 mins: and temperature, $18^{\circ}C$. The optimum methanol extraction conditions were the following: extraction concentration, 65%; time, 120 mins; and temperature, $16^{\circ}C$.

Meteorological Characteristics of the Wintertime High PM10 Concentration Episodes in Busan (부산지역 겨울철 고농도 미세먼지 발생일의 기상학적 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.815-824
    • /
    • 2012
  • The purpose of this study was to analyze the meteorological characteristics of wintertime high PM10 concentration episodes in Busan. $PM_{10}$ concentration has been reduced for the past four years and recorded near or exceeded 100 ${\mu}g/m^3$ (national standard of $PM_{10}$). High concentration episodes in Busan were 6 case, $PM_{2.5}/PM_{10}$ ratio was 0.36~0.39(mean 0.55). High $PM_{10}$ concentration occurred during higher air temperature, more solar radiation and sunshine, lower relative humidity, and smaller cloud amount. Synoptically, it also occurred when Busan was in the center or the edge of anticyclone and when sea breeze intruded. An analysis of upper air sounding showed that high $PM_{10}$ concentration occurred when surface inversion layer and upper subsidence inversion layer existed, and when boundary layer depth and vertical mixing coefficient were low. An analysis of backward trajectory of air mass showed that high $PM_{10}$ concentration was largely affected by long range transport considering that it occurs when air mass is intruded from China.