• Title/Summary/Keyword: Surface concentration

Search Result 6,117, Processing Time 0.027 seconds

Optimization of Extraction Conditions for Lyophyllum ulmarium by Response Surface Methodology (반응표면분석에 의한 만가닥 버섯의 추출조건 최적화)

  • 김현구;최맑음;김미옥;김공환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.574-580
    • /
    • 2003
  • Optimal extraction conditions for yield, browning color, electron donating ability, nitrite scavenging effect, total polyphenol content and tyrosinase inhibitory activity of Lyophyllum ulmarium were determined by using response surface methodology (RSM) through the central composite design. The extraction yield of Lyophyllum ulmarium was effected by ethanol concentration and browning color was improved with the increase of ethanol concentration than microwave power. The nitrite scavenging effect was improved with the increase of ethanol concentration and decrease of microwave power The electron donating ability, browning color, tyrosinase inhibitory activity and total polyphenol content were improved with the increase in ethanol concentration and microwave power. The optimal ranges of extraction conditions for effective components of Lyophyllim ulmarium were predicted as 60.05~102.75 watt of microwave power, 53.20~64.01% of ethanol concentration and 7.77 min of extraction time.

A Study on the Regeneration of Ni Catalyst for Hydrogenation(II) (수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구 (II))

  • Kim, Jung-Hun;Lee, Gun-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1991
  • Regeneration of carbon-deposited Ni catalyst used for hydrogenation reaction was studied. Deposited carbon was removed by oxidation with various concentrations of oxygen. Activity of the catalysts was tested on aniline hydrogenation as a model reaction. When a carbon-deposited catalyst was treated under oxygen atmosphere, the specific surface area of the catalyst increased and then decreased with the increase of treatment temperature. The treatment temperature which gives maximum specific surface area increased with the decrease of oxygen concentration. Pore size of the support was decreased and sintering of nickel particles was more significant with the increase of oxygen concentration. The catalyst treated under 5 % oxygen concentration recovered its catalytic activity up to 90 % of the initial value, but the treatment under 20 % oxygen concentration gave no significant increase of the catalytic activity. Catalytic activity increased with treatment time when the catalyst was treated under 5 % oxygen concentration, but nearly constant after 1 hour.

  • PDF

Improvement of Water Resistant Properties of a Linerboard for Corrugated Fiberboard Box by Coating with Na-alginate (알긴산 코팅에 의한 골판지 상자 제조용 라이너 원지의 수분저항성 증진)

  • Kim, Eun-Jung;Rhim, Jong-Whan;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.762-766
    • /
    • 2006
  • To improve water resistance of paperboard used to manufacture the corrugated boxes, effect of surface coating of the liner- board with Na-alginate was investigated by determining the optimum processing conditions such as a optimum alginate concentration for surface coating, plasticizer content, concentration of divalent cations their immersion times, For the surface coating of the liner-board, 2.5% Na-alginate solution was found to be the optimum concentration, and the concentration of glycerol used as plasticizer was effective when 35% alginate concentration was use was Used Immersion of the alginate coated paperboard for 3 min in a $CaCl_2$ solution improved the water resistance properties. As a divalent cation for the insolubilization of the alginate films, $Cu^{2+}$ was found to be as effective as $Ca^{2+}$. Among the platicizers tested, sorbitol was the most effective in reducing water vapor permeability and water solubility of alginate coated paperboard.

Improvement of Anthocyanin Encapsulation Efficiency into Yeast Cell by Plasmolysis, Ethanol, and Anthocyanin Concentration Using Response Surface Methodology

  • Dong, Lieu My;Hang, Hoang Thi Thuy;Tran, Nguyen Huyen Nguyet;Thuy, Dang Thi Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.267-275
    • /
    • 2020
  • Anthocyanins are antioxidant compounds susceptible to environmental factors. Anthocyanin encapsulation into yeast cells is a viable solution to overcome this problem. In this study, the optimal factors for anthocyanin encapsulation were investigated, including anthocyanin concentration, plasmolysis contraction agent, and ethanol concentration, and response surface methodology was evaluated, for the first time. Anthocyanin from Hibiscus sabdariffa L. flowers was encapsulated into Saccharomyces cerevisiae using plasmolysis contraction agent (B: 3%-20% w/v), ethanol concentration (C: 3%-20% v/v), and anthocyanin concentration (A: 0.15-0.45 g/ml). The encapsulation yield and anthocyanin loss rate were determined using a spectrometer (520 nm), and color stability evaluation of the capsules was performed at 80℃ for 30 min. The results of the study showed that these factors have a significant impact on the encapsulation of anthocyanin, in which ethanol agents have the highest encapsulation yield compared to other factors in the study. Statistical analysis shows that the independent variables (A, B, C), their squares (A2, B2, C2), and the interaction between B and C have a significant effect on the encapsulation yield. The optimized factors were anthocyanin, 0.25 g/ml; NaCl, 9.5% (w/v); and ethanol, 11% (v/v) with an encapsulation yield of 36.56% ± 0.55% and anthocyanin loss rate of 15.15% ± 0.98%; This is consistent with the expected encapsulation yield of 35.46% and loss rate of 13.2%.

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.

Optimization of Corni fructus Extracts by Response Surface Methodology (반응표면분석에 의한 산수유 추출물의 추출조건 최적화)

  • Lee, Hye-Jin;Do, Jeong-Ryong;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.3
    • /
    • pp.390-395
    • /
    • 2012
  • Response surface methodology was used to monitor the characteristics of Corni fructus. A maximum electron donating ability of 81.27% was obtained at 119.71 W of microwave power, 7.71% of ethanol concentration, and 4.21 min of extraction time. The maximum inhibitory effect on tyrosinase was 105.92% at 143.36 W of microwave power, 58.19% ethanol concentration, and 6.71 min of extraction time. The maximum superoxide dismutase like activity was 87.08% under the extraction conditions of 107.33 W of microwave power, 96.14% ethanol concentration, and 31.49 min of extraction time. The total polyphenol content showed a maximum of 475.86 mg% at 140.29 W of microwave power, 27.44% ethanol concentration, and 58.69 min of extraction time. Based on the superimposition of four-dimensional RSM data regarding the electron-donating ability, inhibitory effect on tyrosinase, superoxide dismutase like activity, and total polyphenol content, the optimum ranges of extraction conditions were found to be at 78~98 W of microwave power, 3~33% ethanol concentration, and 3.6~9 min of extraction time.

A Study on Softening Finish of Cotton Fabric using Cellulase (셀루라아제에 의한 면직물의 유연가공에 관한 연구)

  • Kang Ji-Yun;Ryu Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.4 s.36
    • /
    • pp.262-273
    • /
    • 1990
  • The purpose of this study is to investigate the softening effect of cellulase-treated cotton fabric and the damage on the fabric which is accompanied by the treatemnt. Cotton fabric is treated with cellulase under various concentrations and time, and the weight loss, hand values (by KES), surface characteristics, moisture regain, tensile strength, copper number and intrinsic viscosity of the treated samples and untreated samples have been compared. The results are as follows: 1. The weight loss of cotton fabric increased as the concentration of cellulase and the treating time increased. 2. The enzyme treatment had little effect on the stiffness of the treated samples but anti- drape stiffness decreased for the treated samples. Fullness and softness of the treated samples increased and crispness decreased with the lowest level reaching after two hours of the treatment for all concentrations. Scrooping feeling of the treated samples increased and flexibility with soft feeling increased as the treating time and the concentration of cellulase increased. 3. Moisture regain of the samples decreased as the treating time and the concentration of the enzyme increased and the treated fabric showed cracks on the fiber surface, and much surface fibers on the fabric have been removed after the treatment. 4. Tensile strength of the samples decreased as the treating time and as the concentration of cellulase increased, and the copper number increased while the intrinsic viscosity decreased as the treating time increased, but cellulase concentration had a little effect.

  • PDF

Optical analysis of low concentration evacuated tube solar collector

  • Teles, Mavd R.;Carvalho, Raquel;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.227-237
    • /
    • 2017
  • The continuous increase of emission rates of green house gases and the effects on global warming added a new dimension to the problem of substituting the petroleum and its derivatives by environment friendly and sustainable energy sources for the world. Solar and wind energy appear at the top of the list of renewable of high potential, widely available, of dominated technology and well accepted. Brazil is one of the few countries in the world that receives number hours of sunshine exceeding 3,000 hours per year with a daily average of 4.5 to 6 kWh. However, this potential is largely unexplored and poorly tapped. The number of renewable systems implanted in Brazil has grown in recent years, but still insignificant when compared, for example, with Germany and Spain among others. This paper presents the results of an optical study on small concentration solar collector with evacuated tube enveloping the absorber and internal reflective surface fixed on the bottom part of the evacuated tube. The designed collector has a 2D geometrical concentration ratio between 2.455 and 4.91. The orientation of the solar collector, the ratio of the radius of the receiver to the radius of the absorber, the incidence angle for each period of the year, the collector inclination angle, the aperture angle of the reflective surface, concentration and optical efficiency were determined. The ray traces and flux distribution on the absorber of the evacuated tube solar collector were determined by using the program Ray Optics Simulation. The optical efficiency varies during the year according to the solar declination. For the periods were the solar declination is close to zero the efficiencies are maximum, and the variation during the day is around 25.88% and 99.9%. For the periods were the solar declination is maximum the efficiencies are minimum, and the variation during the day is around 23.78% and 91.79%.

Field observation of sediment suspension in the surf zone (쇄파대의 저질부유에 관한 현지관측)

  • 신승호;율산서소
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.141-146
    • /
    • 2003
  • Time seres of suspended sediment concentration, surface elevation and velocity were measured and analysed to investigate the role of waves and the predominance of infra-gravity wave component for sediment suspension phenomena in the surf zone. For the investigation in detail, we adopted the cross spectral analysis method between sediment concentration and the characteristic values of wave, and ensemble average analysis method about long-period wave component, which is dominant to sediment suspension in the measurement point. The obtained results are summarized as follows: 1) The relationship between sediment concentration and the characteristic values of wave is stronger for the long-period standing wave components(about 60s and 30s) than the long wave components(about 100s), which have the most energetic power, 2) and also, it is cleared that sediment concentration is increased in the case of the phase, the velocity components of the first mode long-period standing wave(60sec) were accelerated toward on-shore direction, that is, the water surface in offshore side is higher than on-shore side.

  • PDF

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Yamaguchi, Masaki;Yamamuro, Hiroki;Takashiri, Masayuki
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1513-1522
    • /
    • 2018
  • Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.