Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.09.008

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration  

Yamaguchi, Masaki (Department of Materials Science, Tokai University)
Yamamuro, Hiroki (Department of Materials Science, Tokai University)
Takashiri, Masayuki (Department of Materials Science, Tokai University)
Abstract
Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.
Keywords
Electrodeposition; Electrolyte temperature; Electrolyte concentration; Bismuth telluride; Thermoelectric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput. 4 (2005) 18-27.
2 L. Franciosoa, C. De Pascali, I. Farella, C. Martucci, P. Creti, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, J. Power Sources 196 (2011) 3239-3243.   DOI
3 R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Micropower energy harvesting, Solid State Electron 53 (2009) 684-693.   DOI
4 D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of things: vision, applications and research challenges, Ad Hoc Netw. 10 (2012) 1497-1516.   DOI
5 A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling, IEEE Commun. Surv. Tutorials 17 (2015) 2347-2376.   DOI
6 S. Nakajima, The crystal structure of $Bi_2Te_{3-x}Se_x$, J. Phys. Chem. Solids 24 (1963) 479-485.   DOI
7 R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, MOCVD of $Bi_2Te_3$, $Sb_2Te_3$ and their superlattice structures for thin-film thermoelectric applications, J. Cryst. Growth 170 (1997) 817-821.   DOI
8 M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki, Y. Nishi, Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: effects of homogeneous irradiation with an electron beam, J. Appl. Phys. 115 (2014) 214311.   DOI
9 H. Scherrer, S. Scherrer, D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995, pp. 211-238.
10 K. Takayama, M. Takashiri, Multi-layered-stack thermoelectric generators using p-type $Sb_2Te_3$ and n-type $Bi_2Te_3$ thin films by radio-frequency magnetron sputtering, Vacuum 144 (2017) 164-171.   DOI
11 K. Yildiz, U. Akgul, H.S. Leipner, Y. Atici, Electron microscopy study of thermoelectric n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ film deposited by dc sputtering, Superlattices Microstruct. 58 (2013) 60-71.   DOI
12 D. Bourgault, C. Giroud Garampon, N. Caillault, L. Carbone, J.A. Aymami, Thermoelectric properties of n-type $Bi_2Te_{2.7}Se_{0.3}$ and p-type $Bi_{0.5}Sb_{1.5}Te_3$ thin films deposited by direct current magnetron sputtering, Thin Solid Films 516 (2008) 8579-8583.   DOI
13 M. Takashiri, Y. Asai, K. Yamauchi, Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing, Nanotechnology 27 (2016) 335703.   DOI
14 A.J. Zhou, L.D. Feng, H.G. Cui, J.Z. Li, G.Y. Jiang, X.B. Zhao, Sequential evaporation of Bi-Te thin films with controllable composition and their thermoelectric transport properties, J. Electron. Mater. 42 (2013) 2184-2191.   DOI
15 M. Takashiri, K. Kurita, H. Hagino, S. Tanaka, K. Miyazaki, Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method, J. Appl. Phys. 118 (2015) 065301.   DOI
16 M. Takashiri, S. Tanaka, K. Miyazaki, Growth of single-crystalline bismuth antimony telluride nanoplates on the surface of nanoparticle thin films, J. Cryst. Growth 372 (2013) 199-204.   DOI
17 M. Koyano, S. Mizutani, Y. Hayashi, M. Miyata, T. Tanaka, K. Fukuda, High-oriented thermoelectric nano-bulk fabricated from thermoelectric ink, J. Electron. Mater. 46 (2017) 2873-2879.   DOI
18 K. Wada, K. Tomita, M. Takashiri, Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method, J. Cryst. Growth 468 (2017) 194-198.   DOI
19 J. Kuleshova, E. Koukharenko, X. Li, N. Frety, I.S. Nandhakumar, J. Tubor, S.P. Beeby, N.M. White, Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applications, Langmuir 26 (2010) 16980-16985.   DOI
20 S.K. Lim, M.Y. Kim, T.S. Oh, Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications, Thin Solid Films 517 (2009) 14-29.
21 K. Matsuoka, M. Okuhata, M. Takashiri, Dual-bath electrodeposition of n-type Bi-Te/Bi-Se multilayer thin films, J. Alloys Compd. 649 (2015) 721-725.   DOI
22 M. Takahashi, Y. Katou, K. Nagata, S. Furuta, The composition and conductivity of electrodeposited Bi-Te alloy films, Thin Solid Films 240 (1994) 70-72.   DOI
23 C. Boulanger, Thermoelectric material electroplating: a historical review, J. Electron. Mater. 39 (2010) 1818-1827.   DOI
24 F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.H. Lee, N.V. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochim. Acta 53 (2008) 8103-8117.   DOI
25 N. Hatsuta, D. Takemori, M. Takashiri, Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films, J. Alloys Compd. 685 (2016) 147-152.   DOI
26 S. Bae, H. Kim, H.S. Lee, Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition, Mater. Chem. Phys. 187 (2017) 82-87.   DOI
27 K. Matsuoka, M. Okuhata, N. Hatsuta, M. Takashiri, Effect of composition on the properties of bismuth telluride thin films produced by galvanostatic electrodeposition, Trans. Mater. Res. Soc. Jpn. 40 (2015) 383-387.   DOI
28 M. Okuhata, D. Takemori, M. Takashiri, Effect of pulse frequency on structural and thermoelectric properties of bismuth telluride thin films by electrodeposition, ECS Trans. 75 (2017) 133-141.
29 C.V. Manzano, B. Abad, M.M. Rojo, Y.R. Koh, S.L. Hodson, A.M.L. Martinez, X. Xu, Shakouri Ali, T.D. Sands, T. Borca-Tasciuc, M. Martin-Gonzalez, Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited $Bi_2Te_3$ films, Sci. Rep. 6 (2016) 19129.   DOI
30 Y. Miyazaki, T. Kajitani, Preparation of $Bi_2Te_3$ films by electrodeposition, J. Cryst. Growth 229 (2001) 542-546.   DOI
31 F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9 (1959) 113-123.   DOI
32 S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters, J. Cryst. Growth 277 (2005) 274-283.   DOI
33 A.J. Naylor, E. Koukharenko, I.S. Nandhakumar, N.M. White, Surfactant-mediated electrodeposition of bismuth telluride films and its effect on microstructural properties, Langmuir 28 (2012) 8296-8299.   DOI
34 M. Takahashi, Y. Oda, T. Ogino, S. Furuta, Electrodeposition of Bi-Te alloy films, J. Electrochem. Soc. 140 (1993) 2550-2553.   DOI
35 S. Morikawa, Y. Satake, M. Takashiri, Characteristics of nanostructured bismuth telluride thin films fabricated by oblique deposition, Vacuum 148 (2018) 296-302.   DOI
36 H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno, T. Iida, Thermoelectric properties of $Bi_2Te_3$-based thin films with fine grains fabricated by pulsed laser deposition, Jpn. J. Appl. Phys. 48 (2009) 085506.   DOI
37 C.-N. Liao, Y.C. Wang, H.-S. Chu, Thermal transport properties of nanocrystalline Bi-Sb-Te thin films prepared by sputter deposition, J. Appl. Phys. 104 (2008) 104312.   DOI
38 Z.H. Zheng, P. Fan, T.B. Chen, Z.K. Cai, P.J. Liu, G.X. Liang, D.P. Zhang, X.M. Cai, Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition, Thin Solid Films 520 (2012) 5245-5248.   DOI
39 M. Takashiri, S. Tanaka, K. Miyazaki, Determination of the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films prepared by use of the flash evaporation method, J. Electron. Mater. 43 (2014) 1881-1889.   DOI
40 X. Duan, Y. Jiang, Annealing effects on the structural and electrical transport properties of n-type $Bi_2Te_{2.7}Se_{0.3}$ thin films deposited by flash evaporation, Appl. Surf. Sci. 256 (2010) 7365-7370.   DOI
41 M. Takashiri, J. Hamada, Bismuth antimony telluride thin films with unique crystal orientation by two-step method, J. Alloys Compd. 683 (2016) 276-281.   DOI
42 K. Yamauchi, M. Takashiri, Highly oriented crystal growth of nanocrystalline bismuth telluride thin films with anisotropic thermoelectric properties using two-step treatment, J. Alloys Compd. 698 (2017) 977-983.   DOI