• Title/Summary/Keyword: Surface composition

Search Result 2,573, Processing Time 0.031 seconds

Layer-by-layer Composition Modulation by Ion-induced Atomic Rearrangement in Metallic Alloys

  • Kim, Byeong-Hyeon;Kim, Sang-Pil;Lee, Gwang-Ryeol;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.359-359
    • /
    • 2010
  • Self-organized nanostructures of dots, holes or ripples produced by energetic ion bombardment have been reported in a wide variety of substrates. Ion bombardment on an alloy or compound also draws much attention because it can induce a surface composition modulation with a topographical surface structure evolution. V. B. Shenoy et al. further suggested that, in the case of alloy surfaces, the differences in the sputtering yields and surface diffusivities of the alloy components will lead to a lateral surface composition modulation [1]. In the present work, the classical molecular dynamics simulation of Ar bombardment on metallic alloys at room temperature revealed that this bombardment induces a surface composition modulation in layer-by-layer mode. In both the $Co_{0.5}Cu_{0.5}$ alloy and the CoAl B2 phase, the element of higher-sputtering yield is accumulated on the top surface layer, whereas it is depleted in lower layers. A kinetic model considering both the rearrangement and the sputtering of the substrate atoms agrees with the puzzling simulation results, which revealed that the rearrangement of the substrate atoms plays a significant role in the observed composition modulation.

  • PDF

Surface segregation of NiZr and CuZr alloys.

  • Kang, H.J.;Park, N.S.;Kim, M.W.;O'Conner, D.J.;Macdonald, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.35-35
    • /
    • 1994
  • The surface segragation of NiZr, CuZr alloy has been studied wi th X-ray Imotoelectron spectroscopy(XPS), Auger electron spectroscopy(AES) and low energy ion scattering(LEIS). The composition of outmost atomic layer has been determinded by the use of LEIS at several incident energies using Ar+ ion. In the LEIS analysis, the effect of charge exchange has been estimated by a novel measurment of the charge exchange parameters while simul taneous determining the relative concentrations of Ni and Zr and the complementary information obtained will be described. The composition of the clean annealed surface, measured with AES only, will be contrasted wi th the surface concentration of the preferentially sputtered surface. The experimental results has been clearly demonstrated that when the NiZr ruld CuZr alloys are exposed to continuous Ar+ ion bombardment the outermost atomic layer is Zr rich due to preferential sputtering of Ni atoms. where Ni is preferentially sputtered, but the difference in sputtering yields is not sufficient to explain the observed composition. Therefore, it is necessary to consider other processes such as Radiation Induced Segregation(RIS). The surface composition of the heated sample surface predicts that Zr should surface segregate which futher supports the view that part of the Zr enrichment is due to RIS.to RIS.

  • PDF

Influence of Wheel Elements Composition Rate on Polished Surface Roughness (MAGIC 숫돌 구성요소의 배합율이 연마면 조도에 미치는 영향)

  • 김남우;백종흔;이상태;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.319-323
    • /
    • 2002
  • Recently, new polishing system which was made by magnetic intelligent compound (MAGIC) was invented and, the study is going on for practical use the analysis of factors, that is, the kind of polishing grain, composition ratio of wheel elements, machining frequency, polishing pressure, which the main influence for polishing efficiency are the first step. In this study, analyzed influence of wheel raw material composition ratio on surface roughness.

  • PDF

Composition and microstructure of Lead-Tin alloy electrodeposits (납-주석합금 도금층의 조성 및 조직특성)

  • 예길촌;지창훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.151-160
    • /
    • 2001
  • The composition and the microstructure of the lead-tin alloy electrodeposited in a gluconate bath were invesitigated according to electrolysis conditions. The tin content of the lead-tin alloy electrodeposits increased with increasing current density and EDTA addition, while it decreased with increasing temperature and sodium gluconate concentration. The preferred orientation of the alloy deposits changed from the (220) plane through (200) to (200) + (111) planes with increasing cathode overpotential. The surface morphology of the films was closely related to both the preferred orientation and the alloy composition.

  • PDF

Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion (InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석)

  • Im, Ik-Tae;Youn, Suk-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

The Effect of the ZnO Nanorod Surface on the Optical Property (ZnO 나노막대의 표면이 광학적 특성에 미치는 영향)

  • Cho, Hyun-Min;Rhee, Seuk-Joo;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • We have studied the effect of the chemical composition of the ZnO nanorod surface on the optical characteristics. The surface was treated with H- and O-plasma at different surface temperatures. The chemical composition of the surface of the ZnO nanorod, being investigated by Auger Electron Spectroscopy(AES), was related to the Photoluminescence(PL) data reported in our previous results. The AES showed the opposite results for the $H_2$ and $O_2$ plasma treatments. The ratio of Zn to O on the surface of the ZnO nanorod increased in the case of $H_2$ plasma, while the composition rate of O increased after $O_2$ plasma treatment. The AES results seems to be correlated to the shift in PL peaks. The increase in the composition rate of Zn on the surface of ZnO nanorod is considered to cause the blue shift of the UV peak. On the contrary, the relative increase of O is considered to cause the red shift in PL peaks.

Insulation Coating for non-oriented Silicon Steel Sheerts (무방향성 전기강판의 절연피막 코팅재)

  • 조남웅;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.382-390
    • /
    • 1997
  • Good appearance of insulation coating is required for non-oriented silicon steel sheets, The property is influenced by both the chemical composition of coating solution and the species of resin. The composition of inorganic-organic coating was studied to obtain good surface quality for non-oriented silicon steel. The greenish degree of coating surface depended on $Cr^{3+}$ content in the coating layer, which was satisfied when chromate content was more than 54.60 wt. %, in the coating solution. The homogeneous pattern and roughness of the coating surface depended on spreading property of the resin. Surface appearance of the coating could be improved by using resin with good spreading property at the chemical composition of chromate 59.00 wt.%.. resin 34.23wt.%, and etyhylene glycol 6.67 wt.% without colloidal sillica.

  • PDF

The Effect of Coloring Condition on the Surface Characteristic of 304 Stainless Steel (304 스테인리스강의 착색 처리 조건이 표면 특성에 미치는 영향)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.220-225
    • /
    • 2011
  • 304 stainless steel plate was colored by hot dip and electrochemical treatment in a solution containing sulphuric and chromic acids. In the process, treatment variables such as operating time and methode were changed. The surface characteristics that changed by the treatment of the samples such as surface composition, oxide film thickness, color, surface roughness and reflectivity were studied. Surface composition was varied as follows. Fe was decreased, but Cr and O were increased. Ni was increased until 20 min, but reveals decreasing tendency as time passed after that. These means the surface film becomes chrome rich oxide phase as the treatment times increase. The thickness of film was about 220 nm at 30 min by dip treatment and it reduced as the treatment times increased. On the other hand, the thickness was about 150 nm at 10 min by electrochemical method and it doesn't increased with time. Surface color changed from metallic white of the base plate to gray, black, red, and green-blue, gradually, as the treating time increased. The reflectivity of colored surface measured by UVVIS-NIR spectrophotometer was reduced from max 38% of basis metal to min 3.5%.

Comparison of surface topography and roughness in different yttrium oxide compositions of dental zirconia after grinding and polishing

  • Shin, Hyun-Sub;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.258-267
    • /
    • 2021
  • PURPOSE. The purpose of this study was to compare the surface roughness, phase transformation, and surface topography of dental zirconia with three different yttrium oxide compositions under same grinding and polishing conditions. MATERIALS AND METHODS. Three zirconia disks (IPS e.max ZirCAD LT, MT, MT multi, Ivoclar Vivadent AG, Schaan, Liechtenstein) were selected for experimental materials. Sixty-nine bar-shaped specimens were fabricated as 12.0 × 6.0 × 4.0 mm using a milling machine and glazing was conducted on 12.0 × 6.0 mm surface by same operator. With a custom polishing device, 12.0 × 6.0 mm surfaces were polished under same condition. Surface roughness (Ra[㎛]) was measured before grinding (C), after grinding (G), and at every 3 steps of polishing (P1, P2, P3). X-ray diffraction and FE-SEM observation was conducted before grinding, after grinding, and after fine polishing (P3). Statistical analysis of surface roughness was performed using Kruskal-Wallis test and Mann-Whitney-U test was used as a post hoc test (α = .05). RESULTS. There were no significant differences of surface roughness between LT, MT, and MM groups. In LT, MT, and MM groups, P3 groups showed significantly lower surface roughness than C groups. X-ray diffraction showed grinding and polishing didn't lead to phase transformation on zirconia surface. In FE-SEM images, growths in grain size of zirconia were observed as yttrium oxide composition increases. CONCLUSION. Polished zirconia surface showed clinically acceptable surface roughness, but difference in yttrium oxide composition had no significant influence on the surface roughness. Therefore, in clinical situation, zirconia polishing burs could be used regardless of yttrium oxide composition.

Effect of Plating Condition and Surface on Electroless Co-Cu-P Alloy Plating Rate (무전해 Co-Cu-P 도금속도에 미치는 도금 조건과 표면상태의 영향)

  • Oh, L.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2000
  • Relationships between the plating condition and the plating rate of the deposition film for the electroless plating of Co-Cu-P alloy were discussed in this report. The result obtained from this experiment were summarized as follow ; The optimum bath composition was consisted of 0.8 ppm thiourea as a stabilizing agent. Composition of the deposit was found to be uniform after two hours of electroless plating. Plating rates of nickel-catalytic surface and zincate-catalytic surface were found to be very closely equal, but the plating time of nickel-catalytic surface took longer than that of the zincated-catalytic surface.

  • PDF