• 제목/요약/키워드: Surface coating layer

검색결과 1,188건 처리시간 0.032초

마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석 (Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System)

  • 강관수;정태곤;양재웅;우수헌;박태현;정용훈
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향 (The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface)

  • 하진욱;박해웅
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1061-1065
    • /
    • 1999
  • Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향을 XRD, SEM, 및 EDXS를 사용하여 고찰하였다. 코팅분말은 입자크기별로 3단계로 분리하였으며 코팅온도는 $950^{\circ}C$$980^{\circ}C$로 변화하였다. Calorizing 처리는 공기 및 아르곤 분위기에서 5시간 동안 행하였다. XRD 결과 공기분위기의 calorizing 처리과정에서 금속산화물($Al_2O_3$)과 질화물(AlN)이 형성됨을 관찰하였다. 공기 및 아르곤 분위기의 calorizing 처리 결과 코팅분말의 입자크기가 감소하고 코팅온도가 증가할수록 코팅층의 두께와 코팅층에서의 알루미늄의 함량이 증가함을 알 수 있었다.

  • PDF

Characterization of Base Paper Properties on Coating Penetration

  • Kim, Bong-Yang;Douglas W. Bousfield
    • 펄프종이기술
    • /
    • 제35권5호
    • /
    • pp.17-25
    • /
    • 2003
  • The influence of base paper properties and fiber type on coating penetration was studied in terms of characterization of coating holdout using two types of hand sheets as the base paper which were prepared from thermomechanical pulp (TMP) and hardwood bleached kraft pulp(KP) sized internally with alkyl ketene dimmer (AKD). Laboratory rod draw down coater was used for surface sizing and coating application. Characterization of coating penetration was done by measuring the roughness of the backside of coating layer. The backside of the coating was exposed by dissolving the fibers in a solution of cupriethylenedimine (CEO). Data show that internal sizing of base paper is effective and surface sizing is more effective to prevent coating penetration. Comparing between the two types of base papers, backside roughness of coating layer of TMP sheet is much larger and sizing is more effective to reduce coating penetration than those of KP sheet. From the result of water absorption and sizing degree after surface sizing, it seems that internal sizing slows down molecular diffusion much more than capillary penetration, but surface sizing reduces the capillary penetration. Furthermore, predominant mechanism of water into paper of TMP sheet seems to be capillary penetration, but it is molecular diffusion in the case of KP sheet.

국산 신문 용지에서 산화전분에 의한 표면 사이징 처리가 인쇄적성에 미치는 영향 (The Surface Sizing Effect of Oxidized Starch on the Printability of Newspaper)

  • 하영백
    • 한국인쇄학회지
    • /
    • 제15권2호
    • /
    • pp.25-40
    • /
    • 1997
  • This research was carried out to investigated the effect of base paper and latex binder on printability and obtical properties of coated paper. Especially, it examined the effect of th pH of vase paper surface and functional groups of latices on the interactions between coating color components and on the structure of coated layer. It was found that the behavior of coating color containing amphoeric latex depends on the pH in the boundary region between coating color and base paper. Thus, the coating color formulated with amphoteric latex formed bulky coating layer by inducing stronger interaction between paper surface and coating components than the coating color with anionic latex. The coated paper with amphoteric latex showed better optical properties (i.e.gloss and optical) and printability (i.e. ink receptivity, wet ink receptivity, and ink set off) than the conventional anionic latex in the acidic and alkaline paper. However, dry pick strength of the coated paper was less decreased. This result indicated that amphoteric latex could also be applied practically to the alkaline paper.

  • PDF

합금화 용융아연 도금강판의 가공시 손상모델을 이용한 도금층 파우더링에 관한 유한요소 해석 (Finite Element Analysis of Powdering of Hot-dip Galvannenled Steel using Damage Model)

  • 김동욱;김성일;장윤찬;이영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.215-222
    • /
    • 2007
  • Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and there for is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. In addition, forming equipment might be polluted with debris by powdering. Therefore, various research have been carried out to prohibit powdering fur improving the quality of GA steel. This paper carried out finite element analysis combined with damage model which simulate the failure of local layer of hot-dip galvannealed steel surface during v-bending test. Since the mechanical property of intermetallic compound was unknown exactly, we used the properties calculated from measurements. The specimen was divided into substrate, coating layer and interface layer. Local failure at coating layer or interface layer was simulated when elemental strain reached a prescribed strain.

  • PDF

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구 (Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface)

  • 이민수;장영수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

광섬유 대량생산시스템 이중 액상코팅공정의 점성소산 및 공정인자 영향성 해석연구 (Parametric Investigation on Double Layer Liquid Coating Process with Viscous Dissipation in Optical Fiber Mass Manufacturing System)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.80-85
    • /
    • 2018
  • The present investigation on optical fiber mass manufacturing features the computational modeling and simulation on a double layer liquid coating process on glass fiber surface. The computational model employs a simplified geometry of typical fiber coating system which consists of primary and secondary coating dies along with secondary coating cup. The viscous dissipation in coating flow is incorporated into the double layer coating process simulations. Heavy temperature dependence of coating liquid viscosity is also considered in the model. The computational results found that the effects of viscous dissipation on both primary and secondary coating layer thicknesses are highly significant at higher drawing speed. Several important coating process parameters such as supply temperature and pressure of primary and secondary coating liquids are investigated and discussed in order to appreciate how those parameters affect the double layer coating layer thickness on fast moving glass fiber.

가스용사에 의한 Ni-Cr 기 자용성합금 용사 의 특성에 미치는 용사조건의 영향 (Effect of Spraying Conditions in Flame Spraying of Ni-Cr Base Self Fluxing Alloy on Mild Steel)

  • 배종규;박경채;정인상
    • 한국표면공학회지
    • /
    • 제22권1호
    • /
    • pp.26-42
    • /
    • 1989
  • It has between investigated that the optimum spaying conditions, such as, spraying distance, fusing temperature and fusing time, ect, in a Ni-cr base self fluxing alloy sprayed on the mild steel substrate by oxygen-acetylenc flame spraying. Sprayed specimens on various conditions were fuused in a vacuum furnace and the results were as follows. The optimum spraying condition for excellent coating layer are obtained under spraying distances, fusing temperature and fusing and time ; 180~240mm,1050~110$0^{\circ}C$and 15~30min, respectively. The adhesive strength and surface hurface hardness of the as sprayed specimens were very low by mechanical bonding becaus of the diffusion layer during process. The carbides and borides and formed in the sprayed coating layer and densification of the layer was resulted from the elimination of pores and oxides. The hardness of sprayed coating layer, particularly in the high temperature, was superior to ordinary tool steels.

  • PDF

Double layer 반사방지막 구조에 대한 태양전지 표면 반사율 simulation (Simulation on Reflectance from Solar Cell Surface Using Double Layered Anti-Reflective Coating)

  • 라창호;양청;유원종
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, we conducted MATLAB simulation using the reflectance formula and the Planck's black body radiation principle, for the purpose of identifying the opimum material and thickness of anti-reflective coating from double layered structures. We found that the optimum condition was obtained when refractive index of upper layer is 1.44 and that of lower layer is 2.29. As materials close to these refractive indices, $MgF_2$ as the upper layer and $HfO_2$, ZnS, $TiO_2$ as the lower layer were suggested. The best result in an average reflectance of 2.759% was obtained from a double layered structure of $MgF_2$ 94 nm/ZnS 55 nm.