• Title/Summary/Keyword: Surface coating layer

Search Result 1,175, Processing Time 0.03 seconds

Stress Analysis in Polymeric Coating Layer Deposited on Rigid Substrate

  • Lee, Sang Soon
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.161-165
    • /
    • 2015
  • This paper presents an analysis of thermal stress induced along the interface between a polymeric coating layer and a steel substrate as a result of uniform temperature change. The epoxy layer is assumed to be a linear viscoelastic material and to be theromorheologically simple. The viscoelastic boundary element method is employed to investigate the behavior of interface stresses. The numerical results exhibit relaxation of interface stresses and large stress gradients, which are observed in the vicinity of the free surface. Since the exceedingly large stresses cannot be borne by the polymeric coating layer, local cracking or delamination can occur at the interface corner.

Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method

  • Yu, Hui-Il;Kim, Ho-Seok;Hong, Bong-Geun;Sin, Ui-Seop;Mun, Se-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.237.2-237.2
    • /
    • 2016
  • A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (C.C) composites using a vacuum plasma spray system. By adopting a SiC buffer layer, we successfully integrated C.C composites with a $100-{\mu}m-thick$ protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increased growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. From these results, it was shown that the addition of a SiC intermediate layer provided optimal surface conditions during the VPS procedure to enhance adhesion between C.C and HfC (without delamination). The thermal ablation test results shows that the HfC coating layer perfectly protected inner C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon;Kim, Hyun Gil;Ryu, Ho Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2054-2063
    • /
    • 2020
  • The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Anti-Reflection Thin Film For Photoelectric Conversion Efficiency Enhanced of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전변환효율 향상을 위한 무반사 박막)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.814-818
    • /
    • 2016
  • DSSCs (dye-sensitized solar cells) based on $TiO_2/SiO_2$ multi layer AR (anti-reflection) coating on the outer glass FTO (fluorine-doped tin oxide) substrate are investigated. We have coated an AR layer on the surface of a DSSCs device by using an IAD (ion beam-assisted deposition) system and investigated the effects of the AR layer by measuring photovoltaic performance. Compared to the pure FTO substrate, the multi layer AR coating increased the total transmittance from 67.4 to 72.9% at 530 nm of wavelength. The main enhancement of solar conversion efficiency is attributed to the reduction of light reflection at the FTO substrate surface. This leads to the increase of Jsc and the efficiency improvement of DSSCs.

Deposition of an Intermediate Layer on an Ultrapermeable Ceramic Support by Evaporation-Driven Self-Assembly (증발유도 자기조립을 이용한 고투과도 세라믹 지지체의 중간층 제조)

  • Kwon, Hyuk Taek;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • In this study, we developed an evaporation-driven self-assembly coating method for an ceramic intermediate layer on an ultrapermeable ��-Al2O3 support with large pore size of ~1.5 ㎛. The method led to the formation of a ceramic intermediate layer with higher surface homogeneity and less surface roughness than the conventional dip-coating method. A mesoporous ��-Al2O3 layer was deposited on the support to evaluate support quality. A supported ��-Al2O3 membrane was defect-free even without repeated coating. Furthermore, the membrane showed 2.3 times higher nitrogen permeance than one prepared on a macroporous support with pore size range of 100~200 nm, which is widely used for ceramic membrane coating.

Improvement of Coating Adherence of Hot-dip Galvanized Sheet Steels (용융아연 도금강판의 도금밀착성 개선)

  • 김종상;배대철
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 1991
  • In the present work the adhesion failure of a hot-dip galvanized coating has been studied as a function gas composition temperature of strip and of atmospheric gas in furnace. The adhesion failure of the hot-dip galvani-zed coating is classified as three mechanisms : carbon deposition, oxide film formation and alloy layer formation. The adhesion failure due to oxide film formation decreased markedly by increasing the gases temperature of direct fired furnace(DFF) in order to improve the reducing ability of steel strip. Optimum conditions of operating and manufacturing facilities for improving the coating adherence are suggested by analyzing the interface between steel substrate and coating layer.

  • PDF