• Title/Summary/Keyword: Surface coating agent

Search Result 185, Processing Time 0.028 seconds

Preferential face coating of knitted PET fabrics via UV curing for water- and oil-repellent finish (자외선 경화에 의한 PET 니트직물의 편면 발수발유 가공)

  • Jeong, Yong-Kyun;Jeong, Yongjin;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.27-35
    • /
    • 2005
  • Conventional pad- dry-cure(thermo-fixation) process usually produces functional performance on both sides of a fabric. UV curing technique was applied to impart water- and oil-repellent finish effective only on the face of a PET knitted fabric. The preferential one-side coating, by virtue of the limited penetration of UV light, was achieved by W curing after padding of a fluorocarbon agent without special coating or printing equipments. The difference in the functional property of face and back sides was examined by measuring water and oil repellency at each side of the treated fabric. The influence of pre/post-irradiation dose and agent concentration on the performance of the finished fabrics were investigated. While increase in both resin concentration and post-irradiation did not have significant effect on the finish, UV pre-irradiation of PET fabrics caused remarkable influence presumably due to appropriate surface modification of PET fabrics required for facile wetting of the resin. The dimensional stability and color change of the UV cured fabrics measured by FAST and reflectance spectrophotometry showed significantly decreased color difference and increased percent extension compared with the samples pre-irradiated without agent application.

PVP-assisted Synthesis of TiO2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces

  • Munkhbaatar, Naranchimeg;Ryu, Ilhwan;Park, Dasom;Yim, Sanggyu
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.219-223
    • /
    • 2015
  • Enhancement of the surface hydrophobicity of polydimethylsiloxane (PDMS) thin films deposited on substrates covered with titanium dioxide ($TiO_2$) nanospheres was studied. First, a low-temperature solution-phase method using polyvinylpyrrolidone (PVP) as a surface capping agent and a water/dimethylformamide (DMF) mixture as the reaction medium was used to synthesize monodisperse $TiO_2$ nanospheres. It was possible to easily control hydrolysis rate of the Ti-precursors and the size of the synthesized nanospheres by varying the amount of PVP and the volume ratio of the solvent mixture. Spray coating of the synthesized $TiO_2$ nanospheres under the PDMS film increased the water contact angle of the film surface to $150.3^{\circ}$. This simple treatment can modify the surface morphology at a nanometer scale without any long or complicated nanoprocess; hence, the surface enters the superhydrophobic Cassie-Baxter regime.

Developing for Reduction Technology of AMD through Coating on the Surface of Pyrite Using Minerals (천연광물을 이용한 황철석 표면 코팅을 통한 폐광산 산성배수 저감 기술 개발)

  • Yun, Hyun-Shik;Gee, Eun Do;Ji, Min Kyu;Lee, Woo Ram;Yang, Jung-Seok;Park, Young-Tae;Kwon, Hyun-ho;Ji, Won-Hyun;Kim, Kijoon;Jeon, Byong-Hun;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • In this study, the effect of surface coating on iron-sulfide mineral for preventing the product acid mine drainage(AMD) was progressed by oxidation process of sulfide minerals abandoned mine Area. Three abandoned mines, Yongdong coal mine, Sil Lim mine, and Il Koang mine were selected as a sulfide mineral resource due to higher contamination rate. Six coating agents, apatite, limestone, mangnite, dolomite, bentonite, and cement were used for preventing the AMD with $H_2O_2$ and NaClO as a oxidizing agent helping for oxidizing process on sulfide minerals. Experimental results showed that sulfide mineral surface was coated effectively. Cement has a higher ability of preventing AMD when the ratio of cement to mineralis 1:1 and experimental condition is maintaining 4Days.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Manufacture and Application of UV-Cured Anti-cigar burning Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 내열 코팅액의 제조 및 응용에 관한 연구)

  • Park, Bo-Ram;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.608-613
    • /
    • 2010
  • This study is on development of UV-cured water soluble coating composition which have more improved anti-cigar burning to prevent a surface of PVC tile from damage of heat. To make an anti-cigar burning coating solution, thermostable agent that synthesize main materials phosphorus compound, guanidine and ammonium phosphate dibasic used temporary flame retardants, changing their contents from 10 to 30wt% against quantities of resin and compounded. After coating PVC tiles using bar-coating method that can adjust a thickness, we estimated surface properties of coated layer such as anti-cigar burning, adhesive power, chemical resistance, thickness of coating, and so on. Results showed that a coating composition added 30 wt% of phosphorus compound and coated with No.12 bar-coater had the best optimized surface property in anti-cigar burning effect, adhesive power and chemical resistance. Also, we could find anti-cigar burning effect was improved as thermostable agents content and coating thickness increased.

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Evaluation of Hydrophobic Performance and Durability of Concrete Coated with Cellulose Nanofiber Mixed Antifouling Coating Agent (셀룰로오스 나노섬유 혼합 방오코팅제가 도포된 콘크리트의 소수성능과 내구성능 평가)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2023
  • Marine and hydraulic structures are subject to durability damage not only due to the penetration of sea water but also due to the attachment of marine organisms. Therefore, in this study, we tried to develop an antifouling coating agent with self-cleaning function for marine concrete. It was confirmed that the antifouling coating agent mixed with AKD, cellulose nanofibers and BADGE had sufficient antifouling performance at a well hydrophobicity of around 140° in contact angle and an inclination angle of 15°. In the abrasion resistance test of the surface, only a maximum loss of 0.015 g occurred. In the durability test, as a result of the chloride ion permeation test, almost no chloride ion permeation occurred in the variable where the coating agent was applied, and carbonation and freeze-thaw damage also rarely occurred, so it was analyzed that it was effective in securing durability of concrete.

Development of Pigment Coated Paper Recognizable With UV Light (자외선 램프로 식별 가능한 안료코팅용지 개발)

  • Kim, Sun-Kyung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.76-81
    • /
    • 2011
  • This study was carried out in order to develop a speciality functional coated paper, which can be recognized under a ultraviolet lamp. The special fluorescent whitening agent (FWA) which absorbs ultraviolet light (397~410 nm) and emits it as yellowish light (570~500nm) was used. The special FWA was applied in a coating color in two ways: (1) direct application to a coating color as a FWA; (2) application on pigment surface, drying it and application it as a fluorescence whitening pigments (colored pigments). The effects of the special FWA on coating color properties were tested and the distribution of colored pigments in coated paper was evaluated under a ultraviolet lamp. The results showed that the colored pigments didn't affect on coating color properties. Experimental results showed the possibility of producing a security coated paper using the special FWA. To produce a speciality functional paper, it was found to be proper to apply the special FWA in the form of colored pigment.

Clinical Guide for Adhesion of Zirconia Restoration (지르코니아 수복물의 접착을 위한 임상 가이드)

  • Hwang, Sung-Wook
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.58-69
    • /
    • 2014
  • In case of esthetic restorative procedure with zirconia restoration, we have to use resin cement because of not only just for retention but also esthetic reason. In such a clinical situation, we have to consider two bonding interfaces, one is tooth surface to resin cement and the other is zirconia surface to resin cement. There is well established bonding protocol between tooth surface to resin cement, but bonding protocol of zirconia surface to resin cement is still controversial. In scientific point of view, there are two mechanism for bonding of zirconia restoration.. One is mechanical retention and the other is chemical adhesion. However, we have three different options for bonding of zirconia restoration in clinical situation; 1) Tribo-chemical coating with silica and silane coupling agent 2) Zirconia primer with phosphate chemistry 3) Self-adhesive resin cement with phosphate chemistry.

An Evaluation of Physical Properties of Metal Sprayed Coating According to Concrete Surface Treatment Methods (콘크리트 표면 처리 방법에 따른 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Jang, Hyun O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.67-68
    • /
    • 2021
  • Social infrastructure facilities can be destroyed instantly when exposed to EMP (ElectroMagnetic Pulse), causing social chaos. However, concrete structures with low electrical conductivity cannot expect EMP shielding effect. Therefore, in this study, a metal sprayed thin film showing excellent EMP shielding performance was applied to a concrete structure to evaluate the metal spray welding efficiency and adhesion performance of the thin film according to the concrete surface treatment method. As a result according to the concrete surface treatment method, It was confirmed that the use of a roughening agent that generates physical irregularities in order to improve the welding efficiency and adhesion performance increases the physical performance of the concrete and metal sprayed thin film.

  • PDF