• Title/Summary/Keyword: Surface characteristic

Search Result 2,492, Processing Time 0.031 seconds

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ${\pm}8.50cm$. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF

CPW Phase Shifter and Shunt Stub with Air-Bridge Fabricated on Oxidized Porous Silicon(OPS) Substrate (산화된 다공질 실리콘 기판 위에 제작된 에어브리지를 가진 CPW Phase Shifter와 Shunt Stub)

  • Sim, Jun-Hwan;Park, Dong-Kook;Kang, In-Ho;Kwon, Jae-Woo;Park, Jeong-Yong;Lee, Jong-Hyun;Jeon, Joong-Sung;Ye, Byeong-Duck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.11-18
    • /
    • 2002
  • This paper presents a CPW phase shifter and shunt stub with air-bridge on a 10-${\mu}m$-thick oxidized porous silicon(OPS) substrate using surface micromachining. The line dimensions of the CPW phase shifter was designed with S-W-Sg = 100-30-400 ${\mu}m$. And the width and length of the air-bridge with "ㄷ“ shape were 100 ${\mu}m$ and 400-460-400 ${\mu}m$, respectively. In order to achieve low attenuation, stepped air-bridge CPW phase shift was proposed. The insertion loss of the stepped air-bridge CPW phase shift is more improved than that of no stepped air-bridge CPW phase shift. The measured phase characteristic of the fabricated CPW phase shifter is close to 180$^{\circ}$ over a very broad frequency range of 28 GHz. The measured working frequency of short-end series stub is 28.7 GHz and the return loss is - 20 dB. And the measured working frequency of short-end shunt stub is 28.9 GHz and the return loss is - 23 dB at midband. As a result, the pattering of stub in the center conductor of CPW lines can offer size reduction and lead to high density chip layouts.

Responses of Young 'Fuyu' Persimmon Trees to Summer Fertilization Rate and Leaf-fruit Ratio

  • Choi, Seong-Tae;Kim, Seong-Cheol;Ahn, Gwang-Hwan;Park, Doo-Sang;Kim, Eun-Seok;Choi, Jae-Hyeok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.577-583
    • /
    • 2016
  • Small-sized persimmons produced by high crop load are better accepted in the export markets. However, maintaining high crop load frequently results in weakness of tree vigor, deterioration of fruit quality, and increase of the risks for alternate bearing. This experiment was conducted to determine the combined effects of fertilization rate and leaf-fruit (L/F) ratio on container-grown 3-year-old 'Fuyu' persimmon trees. Application of 3.6-g N, 2.1-g $P_2O_5$, 2.7-g $K_2O$, 2.7-g CaO, and 0.6-g MgO was for the control fertilization rate (CF) and that of a 3-fold CF was for the high fertilization rate (HF). Commercial fertilizers were surface-applied to a container on July 6, July 17, and August 10 in three equal aliquots. Single tree for each fertilization rate was assigned for 12 L/F ratios (5, 6.3, 7.7, 9, 10.4, 13, 15.5, 18, 21, 24, 27, and 33) mostly by fruit thinning or rarely by defoliation on July 1. HF did not affect the yield, weight and soluble solids of the fruits but decreased skin color. As L/F ratio increased, yield decreased but average weight, skin color, and soluble solids of fruits increased. With HF, N and K concentrations in leaves, fruits, and shoots increased to some extent but soluble sugars in dormant shoots decreased. Many shoots were cold-injured with low L/F ratio especially at the HF. HF did not increase number of flower buds the next spring either on a shoot or on a tree basis but increased shoot length, compared with the CF. Increasing L/F ratio markedly increased number of flower buds and shoot growth the following year at both fertilization rates. Therefore, an appropriate combination of fertilization rate and L/F ratio should be necessary to maintain stable fruit production and tree vigor at high crop load.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Evapotranspiration Measurements using an Eddy Covariance Technique in a Mixed Forest and a rice paddy in Korea (에디 공분산으로 관측된 혼효림과 논에서의 증발산)

  • Kwon, Hyou-Jung;Kang, Min-Seok;Kim, Joon;Lee, Jung-Hoon;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.565-570
    • /
    • 2010
  • Evapotranspriation (ET) was measured by eddy covariance method in two key ecosystems in Korea: the Seolmacheon site (a mixed forest in a complex terrain, SMK) and the Cheongmicheon site (a homogeneous rice paddy, CRK). By using the multi-year observations (SMK: Sep. 2007 - Dec. 2009, CRK: Aug. 2008 - Dec. 2009), we quantified ET and analyzed its temporal variations and control mechanisms based on the radiatively coupled combination equation. During the study period, the accumulated precipitation was about 3213 mm for the SMK site, of which about 30% (i.e., 990 mm), returned to the atmosphere as ET. At the CRK site from Jan. - Dec., 2009, the annual ET was 553 mm, which was about 40% of the annual rainfall (of 1401 mm). Both sites showed a characteristic seasonality with mid-season depression in ET that are associated with the reduced amount of available energy during the monsoon season. The decoupling parameter (${\Omega}^*$), which indicates the measure of interaction between vegetation and the atmosphere, averaged about 0.4 for the SMK site and the CRK site during the growing season. The ET from both sites was more influenced by air saturation deficit and surface conductance than available energy.

  • PDF

Runoff Analysis for Urban Unit Subbasin Based on its Shape (유역형상을 고려한 도시 단위 소유역의 유출 해석)

  • Hur, Sung-Chul;Park, Sang-Sik;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • In order to describe runoff characteristics of urban drainage area, outflow from subbasins divided by considering topography and flow path, is analyzed through stormwater system. In doing so, concentration time and time-area curve change significantly according to basin shape, and runoff characteristics are changed greatly by these attributes. Therefore, in this development study of FFC2Q model by MLTM, we aim to improve the accuracy in analyzing runoff by adding a module that considers basin shape, giving it an advantage over popular urban hydrology models, such as SWMM and ILLUDAS, that can not account for geometric shape of a basin due to their assumptions of unit subbasin as having a simple rectangular form. For subbasin shapes, symmetry types (rectangular, ellipse, lozenge), divergent types (triangle, trapezoid), and convergent types (inverted triangle, inverted trapezoid) have been analyzed in application of time-area curve for surface runoff analysis. As a result, we found that runoff characteristic can be quite different depending on basin shape. For example, when Gunja basin was represented by lozenge shape, the best results for peak flow discharge and overall shape of runoff hydrograph were achieved in comparison to observed data. Additionally, in case of considering subbasin shape, the number of division of drainage basin did not affect peak flow magnitude and gave stable results close to observed data. However, in case of representing the shape of subbasins by traditional rectangular approximation, the division number had sensitive effects on the analysis results.

Characterization and assessment of the dolomite powder for application as fillers in the marble-type ore (대리암형 백운석의 분체 특성과 충전재로서의 응용성 평가)

  • Noh, Jin-Hwan;Lee, Na-Kyoung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.71-81
    • /
    • 2007
  • The marble-type dolomite from the Jasung Mine, which was farmed by duplicated affects of contact metamorphism and subsequent hydrothermal alteration, corresponds to a high-purity dolomite ranging up to above 98wt.% in dolomite contents. The dolomite contain minor impurities such as quartz, muscovite, and pyrite. It is characteristic that the dolomite is fairy Fe-rich corresponding to 0.4 wt.% due to the presence of pyrite of possible hydrothermal origin. The dolomite is nearly white-colored and constituting with subhedral crystals ranging $0.35{\sim}0.46mm$M in size, forming equigranular texture. Compared to the typical high-Ca limestone from the Pungchon Formation, the powder characteristics of dolomite is rather superior in milling efficiency, yields of fine particles, and size distribution. In addition, except for iron contents, the dolomite powder is no less superior than the limestone in quality and characteristics as fillers with respects to not only whiteness, oil absorption, and specific surface area but also shape characters such as elongation ratio, aspect ratio, and sphericity. This good characteristics of dolomite powder seem to be originated basically from comparatively higher grade and crystallinity of dolomite. Higher iron contents and the presence of sulfides prevents the dolomite from application for uses by thermal treatment, except for metallic manufacture. However, if proper ore separation procedure is available, the dolomite can be sufficiently utilized as substitutes for high-Ca limestone in most fields of filler industries.

Design of a Ultra Miniaturized Voltage Tuned Oscillator Using LTCC Artificial Dielectric Reson (LTCC 의사 유전체 공진기를 이용한 초소형 전압제어발진기 설계)

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.613-623
    • /
    • 2012
  • In this paper, we present an ultra miniaturized voltage tuned oscillator, with HMIC-type amplifier and phase shifter, using LTCC artificial dielectric resonator. ADR which consists of periodic conductor patterns and stacked layers has a smaller size than a dielectric resonator. The design specification of ADR is obtained from the design goal of oscillator. The structure of the ADR with a stacked circular disk type is chosen. The resonance characteristic, physical dimension and stack number are analyzed. For miniaturization of ADRO, the ADR is internally implemented at the upper part of the LTCC substrate and the other circuits, which are amplifier and phase shifter are integrated at the bottom side respectively. The fabricated ADRO has ultra small size of $13{\times}13{\times}3mm^3$ and is a SMT type. The designed ADRO satisfies the open-loop oscillation condition at the design frequency. As a results, the oscillation frequency range is 2.025~2.108 GHz at a tuning voltage of 0~5 V. The phase noise is $-109{\pm}4$ dBc/Hz at 100 kHz offset frequency and the power is $6.8{\pm}0.2$ dBm. The power frequency tuning normalized figure of merit is -30.88 dB.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.