• Title/Summary/Keyword: Surface adsorption

Search Result 2,336, Processing Time 0.027 seconds

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility (불포화 암반 파쇄대를 통한 핵종 이동)

  • Kim, Won-Seok;Kim, Jungjin;Ahn, Jinmo;Nam, Seongsik;Um, Wooyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.465-471
    • /
    • 2015
  • Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.

Evaluation of Pollution Loads Removal Efficiency of Vegetation Buffer Strips Using a Distributed Watershed Model (분포형 유역모델을 이용한 식생여과대의 오염부하 저감효과 분석)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bohn Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.369-383
    • /
    • 2016
  • A distributed watershed model CAMEL(Chemicals, Agricultural Management and Erosion Losses) was applied to a part of grazing grassland and vegetation buffer strip(VBS) located in Daegwanryeong, Korea. A set of scenario analyses was carried out for grassland and VBS with various combinations of VBS widths, soil textures and ground surface slopes. The simulation results indicate that annual direct runoff decreases with wider VBS and the removal efficiency of pollutants generally decrease with steeper slopes. The removal efficiency of sediment is not significantly different with VBS widths. For gentle and medium slopes($10^{\circ}$, $20^{\circ}$), the removal efficiency of TOC and TN is not significantly different with VBS widths. As for a steep slope($30^{\circ}$), however, the removal efficiency of TOC and TN increases with narrower VBS. The removal efficiency of TP is generally high except for medium and steep slope of sandy loam where the removal efficiency of TP increases with wider VBS. This result of TP is contrary to the results of TOC and TN due to the adsorption characteristics of phosphorus associated with fine sediment particles. It is expected that CAMEL can be used for evaluating the effectiveness of VBS to reduce non-point source pollution discharges.

Application of Water Model for the Evaluation of Pesticide Exposure (농약의 노출 평가를 위한 수계예측모형의 적용)

  • Son, Kyeong-Ae;Kim, Chan-Sub;Gil, Geun-Hwan;Kim, Taek-Kyum;Kwon, Hyeyoung;Kim, Jinbae;Im, Geon-Jae;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.236-246
    • /
    • 2014
  • Pesticide is used to protect the crops, but also become a cause of polluting the environment. Perform a risk assessment using physical and chemical properties, environmental fate and toxicity data in order to determine the pesticide registration. The aquatic model estimates pesticide concentrations in water bodies that result from pesticide applications to rice paddies and apple orchard. The used models are the PRZM, EXAMS and AGRO shell (PA5), Rice Water Quality Model (RICEWQ) and Screening Concentration In GROund Water (SCI-GROW). The residual concentration of water body was estimated using meteorological data, crop calendar and soil series of Korea. The chosen pesticides were butachlor, carbofuran, iprobenfos and tebuconazole. It has shown the potential that the RICEWQ is possible to predict residue level in water of butachlor and iprobenfos, because the maximum value in water monitoring data is lower than the peak concentration of the model, and the minimum value is lower than the average annual concentration of the model. But RICEWQ was insufficient to predict exposure concentrations in ground water. The estimated exposure concentrations of carbofuran in ground water is very higher than in surface water because of its low soil adsorption coefficient. Although tebuconazole were not detected in the water monitoring that means very low concentration, it is possible that the PA5 can be used to predict residue level in water.

A Study on the Preparation of Battery Separator for Polyethylene/Potassium Hexatitanate Whisker (폴리에틸렌/육티탄산칼륨 휘스커 복합재료에 의한 축전지격리막의 제조에 관한 연구)

  • Lee, Wan-Jin;Ko, Man-Seok;Choi, Byung-Ryul;Cho, Il-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.193-199
    • /
    • 1998
  • The mixtures of ultra-high molecular weight polythylene (UHMWPE), high density polyethylene (HDPE), process oil (mineral oil) and potassium hexatitanate whisker were melted and mixed at $150^{\circ}C$ for 30min, and prepared by compression molding to the specimen of separator of about $200{\mu}m$ thickness at the same temperature and 5000 psi. Thereafter the pores were formed by extracting process oil with organic solvents. In this study, the range of PR (the ratio polymer to process oil) was varied from 0.1 to 0.5 because the specimen turned into rubbery phase at which PR was below 0.1 whereas it changed into gel phase at which PR was above 0.5. When the specimen was treated with nonpolar organic solvents, process oil was extracted nearly 98%. Tensile strength was $31kg/cm^2$ at PR = 0.426, and resistance of specimen was $37m{\Omega}/cm^2$ at PR = 0.186, and $53m{\Omega}/cm^2$ at PR = 0.426. The $N_2$ adsorption-desorption isotherm showed a hysteresis representing regions of capillary condensation, and the surface area at PR = 0.186 was relatively large as $130cm^2/g$. Potassium hexatitanate whisker was randomly dispersed in between PE layers. It might be that the whisker is intercalated through the PE thin layers oriented by compression.

  • PDF

Study on Pesticide Runoff from Soil Surface-III - Runoff of Pesticides by Simulated Rainfall in the Laboratory - (농약의 토양 표면유출에 관한 연구-III - 실내에서 인공강우에 의한 농약의 유출특성 -)

  • Yeom, Dong-Hyuk;Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Park, Chang-Kyu;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.334-341
    • /
    • 1997
  • In the laboratory experiment, concentration and rate of runoff of 7 pesticides were measured under the simulated rainfall. Total runoff rate of metolachlor, alachlor, chlorothalonil, chlorpyrifos, EPN, phorate and captafol were 57.0, 14.2, 13.2, 7.9, 7.2, 7.1 and 2.8%, respectively, and the average runoff concentrations were 940, 399, 55, 7.0, 9.3, 151 and 7.0 ppb, respectively. Significant relationship was observed between the runoff rate and water solubility in the laboratory experiment(r=0.923). Even though not very high, relatively significant results were obtained in other experimental conditions. Based on the results, runoff rate prediction$[Y=0.2812{\times}10exp(0.261logWS-0.366)+0.3594{\times}10exp(-0.545logKoc+1.747)+0.3594{\times}10exp(-0.362log\;Kow+1.105]$ and conversion equations were calculated to investigate the possibility of estimating runoff rate in the field by natural rain. Calculated runoff rate by conversion equation was similar to experimental result with captafol in the field while 6 times higher result was obtained by the prediction equation. Therefore, those prediction and conversion equations derived from the laboratory experiment data and physicochemical properties of the pesticides could be used for the prediction of field runoff rate of pesticides by natural rainfall.

  • PDF

Selective Catalytic Reduction of NO by H2 over Pt-MnOx/ZrO2-SiO2 Catalyst (Pt-MnOx/ZrO2-SiO2 촉매에서 수소에 의한 일산화질소의 선택적 촉매 환원반응)

  • Kim, Juyoung;Ha, Kwang;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • Selective catalytic reduction of nitrogen monoxide by hydrogen ($H_2$-SCR of NO) over platinum catalysts impregnated on zirconia-incorporated silica ($ZrO_2-SiO_2$) and manganese oxide ($MnO_x$) was investigated. $Pt-MnO_x$ catalyst showed low conversions and low yields of $N_2O$ and $NO_2$ at $100{\sim}350^{\circ}C$. On the other hand, NO conversions over $Pt/ZrO_2-SiO_2$ were very high, but $N_2O$ was predominantly produced at $100-150^{\circ}C$ and the yield of $NO_2$ increased with temperature at $200-300^{\circ}C$, resulting in poor $N_2$ yields. $Pt-MnO_x/ZrO_2-SiO_2$ exhibited a small enhancement in $N_2$ yield at $100-150^{\circ}C$ due to the synergy of $MnO_x$ and $ZrO_2-SiO_2$. The surface composition and oxidation state of the catalyst components and the acidity of the catalysts were examined. IR spectra of the adsorption of NO and their subsequent reactions with hydrogen on these catalysts were also recorded. The variations of conversion and product yield according to the catalyst components in the $H_2$-SCR of NO were discussed in relation to their catalytic roles.

Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells (산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조)

  • Lee, Jin-Hyoung;Lee, Tae-Kun;Kim, Cheol-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2011
  • The energy conversion efficiency of DSSCs (Dye-Sensitized Solar Cells) is dependent on the powder size, the structure, and the morphology of $TiO_2$ electrode. The higher efficiency is obtained with high surface area of the nanoanatase-$TiO_2$ powder adsorbed onto a lot more of the dye. Also, the enhancement of light scattering increases the efficiency with high adsorption of the dye. Powder size, crystalline phase, and shape of $TiO_2$ obtained by hydrothermal method have 15-20 nm, anatase and round. $TiO_2$ electrode has fabricated with the mixture of scattering $TiO_2$ particle with 0.4 ${\mu}m$ in nano-sized powder. Conversion efficiency of series of DSSCs was measured with volume fraction of scattering particle. Photovoltaic characteristics of DSSCs with 10% scattering particles are 3.51 mA for Jsc (short circuit current), 0.79 V for Voc(open circuit potential), filling factor 0.619 and 6.86% for efficiency. Jsc was improved by 11% and enhancement of efficiency by 0.77% compared with that of no scattering particles. The confinement of inserted light by light scattering particles has more increase of the injection of exiton(electron-hole pair) and decrease of moving path in electron. Efficiencies of DSSCs with more than 10% for scattering particles have reduced with increasing the pore in the $TiO_2$ electrode.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

Binding of the His-tagged Tail Protein J of Bacteriophage Lambda with Escherichia coli K-12 (히스티딘으로 표지된 람다 박테리오파아지 꼬리 단백질 J와 대장균 K-12와의 결합)

  • Shin, Hae Ja
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.78-82
    • /
    • 2018
  • Detection of pathogenic microorganisms takes several days by conventional methods. It is necessary to assess microorganisms in a timely manner to reduce the risk of spreading infection. For this purpose, bacteriophages are chosen for use as a biosensing tool due to their host specificity, wide abundance, and safety. However, their lytic cycle limits their efficacy as biosensors. Phage proteins involved in binding to bacteria could be a robust alternative in resolving this drawback. Here, a fragment of tail protein J (residues 784 to 1,132) of phage lambda fused with 6X His-tag (6HN-J) at its N-terminus was cloned, overexpressed, purified, and characterized for its binding with microorganisms. The purified protein demonstrated a size of about 38 kDa in sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) and bound with anti-His monoclonal antibodies. It bound specifically to Escherichia coli K-12, and not Salmonella typhimurium, Bacillus subtilis, or Pseudomonas aeruginosa in dot blotting. Binding of the protein to E. coli K-12 inhibited about 50% of the in vivo adsorption of the phage lambda to host cells at a concentration of $1{\mu}g/ml$ 6HN-J protein and almost 100% at $25{\mu}g/ml$ 6HN-J. The results suggest that a fusion viral protein could be utilized as a biosensing element (e.g., protein chips) for detecting microorganisms in real time.

Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride (염화아연에 의해 활성화된 폴리아크릴로나이트릴계 다공성 탄소나노섬유의 제조 및 특성)

  • Lee, Hye-Min;Bae, Kyong-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.370-374
    • /
    • 2013
  • The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.