Browse > Article

Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride  

Lee, Hye-Min (R&D Division, Korea Institute of Carbon Convergence Technology)
Bae, Kyong-Min (Department of Chemistry, Inha University)
Kang, Hyo-Rang (Samsung Advanced Institute of Technology)
An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University)
Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Applied Chemistry for Engineering / v.24, no.4, 2013 , pp. 370-374 More about this Journal
Abstract
The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.
Keywords
electrospinning; carbon nanofibers; polyacrylonitrile; activation; zinc chloride;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 T. Depci, A. R. Kul, and Y. Onal, Chem. Eng. J., 200, 224 (2012).
2 F. Boudrahem, A. Soualah, and F. A. Benissad, J. Chem. Eng. Data., 56, 1946 (2011).   DOI   ScienceOn
3 J. Y. Cheng, L. Yang, L. Dong, X. L. Long, and W. K. Yuan, J. Ind. Eng. Chem., 18, 1628 (2012).   DOI   ScienceOn
4 M. Sharon and M. Sharon, Carbon Lett., 13, 161 (2012).   DOI   ScienceOn
5 R. Farma, M. Deraman, A. Awitdrus, I. A. Talib, E. Taer, N. H. Basri, J. G. Manjunatha, M. M. Ishak, B. N. M. Dollah, and S. A. Hashmi, Bioresour. Technol., 132, 254 (2013).   DOI   ScienceOn
6 C. Ma, Y. Song, J. L. Shi, D. Zhang, M. Zhong, Q. Guo, and L. Liu, Mater. Lett., 76, 211 (2012).   DOI   ScienceOn
7 C. T. Lee, J. Ind. Eng. Chem., 18. 433 (2013).
8 W. Jo, M. Oh, J. Kim, and S. Kim, Korean Chem. Eng. Res., 48, 673 (2010).
9 S. Wang, J. Z. H. Zhang, H. Zhao, and W. Liu, J. Electrochem. Sci., 7, 11264 (2012).
10 X. Zhu, Y. Fu, G. Hu, Y. Shen, W. Dai, and X. Hu, Water Air Soil Pollut., 224, 1387 (2012).
11 Y. N. Chun, M. S. Lim, and K. Yoshikawa, J. Ind. Eng. Chem., 18, 839 (2012).   DOI   ScienceOn
12 H. R. Yu, S. h. Cho, M. J. Jung, and Y. S. Lee, Micropor. Mesopor. Mater., 172, 131 (2013).   DOI   ScienceOn
13 M. H. Baek, W. C. Jung, J.W. Yoon, J. S. Hong, Y. S. Lee, and J. K. Suh, J. Ind. Eng. Chem., 19, 469 (2013).   DOI   ScienceOn
14 M. J. Jung, E. G. Jeong, Y. S. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 1315 (2013).   DOI   ScienceOn
15 N. Yusof, A. F. Ismail, D. Rana, and T. Matsuura, Mater. Lett., 82, 16 (2012).   DOI   ScienceOn
16 W. Pan and J. Gong, Key Eng. Mater., 512, 45 (2012).
17 L. Borah, K. K. Senapati, C. Borgohain, S. Sarma, S. Roy, and P. Phukan, J. Porous Mater., 19, 767 (2012).   DOI
18 X. He, R. Li, J. Qiu, K. Xie, P. Ling, M. Yu, X. Zhang, and M. Zheng, Carbon, 50, 4911 (2012).   DOI
19 W. Shen and W. Fan, J. Mater. Chem. A, 1, 999 (2013).   DOI
20 G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, and J. Qiu, Electrochim. Acta, 69, 65 (2012).   DOI   ScienceOn
21 C. Y. Qing, W. R. Ping, and Y. X. Feng, Chin. J. Struct. Chem., 31, 3 (2012).
22 W. Dong, X. Chen, Y. Wu, C. Zhao, and C. L. Liu, Energ. Fuel., 26, 6040 (2012).   DOI   ScienceOn
23 M. Manoochehri, A. Khorsand, and E. Hashemi, Carbon Lett., 13, 167 (2012).   DOI   ScienceOn
24 C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo, and S. C. Yang, Adv. Mater., 19, 2341 (2007).   DOI   ScienceOn
25 L. W. Ji and X. W. Zhang, Electrochem. Commun., 11, 684 (2009).   DOI   ScienceOn
26 S. Brunauer, P. H. Emmet, and W. E. Teller, J. Am. Chem. Soc., 60, 309 (1938).   DOI
27 J. H. Shin, S. G. Lim, S. K. Kim, D. H. Peck, B. R. Lee, and D. H. Jung, Korean Chem. Eng. Res., 49, 769 (2011).   DOI
28 J. Zeng, H. Zhu, and J. Kong, Adv. Mater. Res., 634, 2170 (2013).
29 G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470 (1983).   DOI   ScienceOn
30 E. J. J. Regalado, C. C. R. Vallejo, H. M. Textle, R. Guerrero, and J. F. E. Muñoz, J. Mex. Chem. Soc., 56, 139 (2012).
31 S. Sakai, K. Kawakami, and M. Taya, J. Chem. Eng. Jpn., 45, 436 (2012).   DOI
32 S. Brunauer, L. S. Deming, E. W. Deming, and E. Teller, J. Am. Chem. Soc., 62, 1723 (1940).   DOI
33 K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Carbon, 30, 1075 (1992).   DOI   ScienceOn
34 J. S. Roh, Korean J. Mater. Res., 13, 742 (2003).   DOI   ScienceOn