• Title/Summary/Keyword: Surface acoustic waves

Search Result 102, Processing Time 0.035 seconds

Tracking of Internal Waves Observed by SAR in the Time Series of Temperature Profile Data (시계열 등온선 자료에서의 SAR로 관측된 내부파의 추적 연구)

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • An abundance of internal waves is observed by SAR in the Yellow Sea during summer. They are small scaled internal waves and are not relatively studied well compared to the ones in the East/South China Sea. These internal waves should be considered in the study of physio-biological properties of the Yellow Sea because the mixing of the stratified surface water caused by internal waves during summer is important for ocean biological environment, and they also affect the sediment transport and acoustic signal transmission in the continental shelf region. To understand the characteristics of internal waves, it is important to get the spatio-temporal information of internal waves simultaneously by executing in-situ measurements as well as the SAR observation. This study tracks the internal waves observed by SAR in the time series of temperature profile data by analyzing simultaneously acquired in-situ measurement data and RADARSAT SAR image on 29 May 2002.

A Study on Surface Acoustic-Wave Amplfication in Piezo-electric Crystals (Piezo 압전 결정체에서의 표면탄성파 증폭에 관한 연구)

  • 이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.51-57
    • /
    • 1981
  • Carriers moving in a semiconductor can impart gain or loss to an acousic wave traveling through Piezo-electric materials. In this paper, surface a coustic wave amplifiers, which employ the interaction between carriers drifting in a semiconduct or film and electic fields accompanying a Rayleigh wave propagating on a Piezoelectric substrate, are described. The effect of various electromagnetic boundary condition on th propagation of surface waves in Piezoelectrics is considered. An expression for the dependence of surface wave velocity on electic boundary conditions is derived. Calculations show that, for properly prepared material, significant amplification is expected up to the microwave frequencies. At high frequencies, gain is reduced because electro diffusion smooths out the electron bucning necessary for amplification.

  • PDF

Evaluation of Velocity and Source Locations of Acoustic Signals in PSC Beam (AE기법을 이용한 PSC보의 음파속도 및 음원위치 산정)

  • Youn, Seok-Goo;Kim, Eun-Keum;Choi, Min-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.330-333
    • /
    • 2006
  • In this paper experimental tests were performed to evaluate velocities of the acoustic waves through prestressed concrete beam and source locations using AE technique. Seven AE sensors are mounted on the surface of 5m length test beam with equal spacing and using Schmidt Hammer AE events are made 18 locations. The velocities of AE signals are evaluated using the time differences of arrival times and the distances between the AE source loactions and the AE sensor locations. In addition, using the Least Square Method, the AE source locations are re-evaluated reversely using both of the arrival times and the velocities of AE signals. Test results show the average velocity of the AE signals is about 4,000m/sec and the velocity decreased with the increase of the trevalling times due to the effect of attenuation. Based on the estimation of the source locations, it is observed that the accuracy of source location is increased when the velocity of each AE sensor used rather than the average velocity.

  • PDF

Analysis of Wave and Current in Anmok Coastal Waters (안목해안의 파랑과 흐름 분석)

  • Lim, Hak-Soo;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Identification of the Shear Velocities of Near Surface Soils Using Torsional Guided Waves (비틀림 유도파를 이용한 근지표면 전단속도 규명)

  • Park, Kyung-Jo;Oh, Hyung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.771-776
    • /
    • 2012
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear(S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fumdamental T(0,1) mode that propagates along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using T(0,1) mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities as a function of depths are formulated using power law curves.

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.

Seismic Surface Wave Cloaking by Acoustic Wave Refraction (음향파 굴절을 이용한 지진파의 표면파 가림)

  • Lee, Dong-Woo;Kang, Young-Hoon;Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.257-263
    • /
    • 2015
  • Recently two seismic cloaking methods of earthquake engineering have been suggested. One is the seismic wave deflection method that makes the seismic wave bend away and the other is the shadow zone method that makes an area that seismic waves cannot pass through. It is called as seismic cloaking. The fundamental principles of the seismic cloaking by variable refractive index were explained. A two-dimensional cylindrical model which was composed of 40 layers of different density and modulus was tested by numerical simulation. The center region of the model to be protected is called 'cloaked area' and the outer region of it to deflect the incoming wave is called 'cloaking area' or 'cloak area.' As the incoming surface wave is approaching to the cloaking area, the refractive index is decreasing and, therefore, the velocity and impedance are increasing. Then, the wave bends away the cloaked area instead of passing it. Three cases are tested depending on the comparison between the seismic wavelength and the diameter of the cloaked region. The advantage and disadvantage of the method were compared with conventional earthquake engineering method. Some practical requirements for realization in fields were discussed.

A Self-Oscillation Type SAW Microgyroscope Based on the Coriolis Effect of Progressive Waves (진행파의 코리올리효과를 이용한 자가발진형 표면탄성파 초소형 자이로스코프)

  • Oh, Hae-Kwan;Choi, Ki-Sun;Lee, Hyung-Keun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.390-396
    • /
    • 2010
  • An 80MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a piezoelectric substrate. The developed sensor consists of two SAW oscillators in which one is used for sensing element and has metallic dots in the cavity between input and output IDTs. The other is used for a reference element. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. According to the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular rate, the difference of the oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz/deg.s within the angular rate range of 0~1000 deg/s. The performances of devices with three IDT structures for two kinds of piezoelectric substrates were characterized. Good thermal stability was also observed during the evaluation process.

The Detectability of Submarine's Turbulent Wake on the sea surface using Ship-Wake Theory (Ship-Wake 이론을 이용한 잠수함 항적탐색 가능성)

  • Lee, Yong-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.773-779
    • /
    • 2011
  • The width of a submarine's turbulent wake, using Shear-free and Ship wake theory, is proportional to $x^n,\;({\frac{1}{5}}{\leq}n<{\frac{1}{2}})$ If we assume submarine's length, width, velocity are 65m, 6.5m, 6kts respectively, and the minimum diffusion of turbulent wake ; ${\infty}\;x^{1/5}$, the width of wake behind the submarine is about 20m at 1.2km, 30m at 15km when there is no breaking waves on the sea surface. However, in the case of breaking waves, it is very limited to identify submarine's wake on the sea surface because wind generated turbulent wake has higher turbulent kinetic energy than that of submarine's wake. As a result, there is a high possibility to detect submarine's wake on the sea surface in the shallow water such as the Yellow-Sea using a proper detection method such as SAR. This means that in anti-submarine operations, non-acoustic sea surface serveillance applied turbulent wake will be very effective way to detect a submarine in near future. To do this we have to develop exact theory of submarine's turbulent wake above all.