• 제목/요약/키워드: Surface Velocity

검색결과 3,408건 처리시간 0.038초

전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계 (Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding)

  • 차명섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구 (Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry)

  • 서성부;정광효
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

Analysis of the Relative Velocity of Friction Surface in Cone Drum False Twisting Mechanism

  • Lee, Choon Gil
    • 한국의류산업학회지
    • /
    • 제2권5호
    • /
    • pp.443-449
    • /
    • 2000
  • An investigation of the relative velocity of friction surface for the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by passing the yarn without a special driving device. This research is theoretically composed of the analysis of the false twisting mechanism. The equations were derived by using the conical angle of the cone drum, projected wrapping angle, and yarn helix angle. Theoretical values of the relative velocity of friction surface were calculated and discussed. It is shown that, as the projected wrapping angle increased, the relative velocity of friction surface decreased. But as the conical angle increased the relative velocity of friction surface also increased.

  • PDF

산지하천의 전자파 표면유속 측정에 기반한 유량 및 유속 관측 오차 분석 (Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow)

  • 김동수;양성기;정우열
    • 한국환경과학회지
    • /
    • 제23권4호
    • /
    • pp.543-552
    • /
    • 2014
  • Fixed Electromagnetic Wave Surface Velocimetry (Fixed EWSV) has been started to be used to measure flood discharge in the mountain stream, since it has various advantages such that it works well to continuously measure stream discharge even in the night time as well as very strong weather. On the contrary, the Fixed EWSV only measures single point surface velocity, thus it does not consider varying feature of the transverse velocity profile in the given stream cross-section. In addition, a conventional value of 0.85 was generally used as the ratio for converting the measured surface velocity into the depth-averaged velocity. These aspects could bring in error for accurately measuring the stream discharge. The capacity of the EWSV for capturing rapid flow velocity was also not properly validated. This study aims at conducting error analysis of using the EWSV by: 1) measuring transverse velocity at multiple points along the cross-section to assess an error driven by the single point measurement; 2) figuring out ratio between surface velocity and the depth-averaged velocity based on the concurrent ADCP measurements; 3) validating the capacity of the EWSV for capturing rapid flow velocity. As results, the velocity measured near the center by the fixed EWSV overestimated about 15% of the cross-sectional mean velocity. The converting ratio from the surface velocity to the depth-averaged velocity was 0.8 rather than 0.85 of a conventional ratio. Finally, the EWSV revealed unstable velocity output when the flow velocity was higher than 2 m/s.

지하 전력구내 OF 케이블의 화염전파속도 특성 실험 (Experiment on the Characteristics of Surface Flame Propagating Velocity of Oil filled Cable in the Underground Utility)

  • 이재하;정진용;홍기배;유홍선
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.44-49
    • /
    • 2005
  • Real-scale experimental study was performed to characterize the surface flame propagating velocity along the OF cable in the underground utility fire. Temperatures of oil filled OF cable and dried OF cable with the diameter of 90mn were measured using thermocouple and data log system. The hexane and alkyl-benzene oil were used as a fire source using the ignition device. As a result while the surface flame propagating velocity of the three cables was $0.06\~0.09cm/s$, the surface flame propagating velocity of the one cable was $0.028\~0.032cm/s$. Therefore, it was found that the surface propagating flame velocity of the three OF cables is $2.1\~2.8times$ faster than that of one OF cable case. The results show that the surface propagating flame velocity became larger as increase of the number of cable, the volume of alkyl-benzene oil in the cable. The characteristics of surface propagating flame velocity in the OF cable can be helpful to fire suppression system in utility.

암반 경계표면의 진동속도 (Vibration Velocity of Rock Mass Boundary Surface)

  • 김일중;김영석
    • 화약ㆍ발파
    • /
    • 제15권4호
    • /
    • pp.11-17
    • /
    • 1997
  • Impulsive vibration velocity is monitored at the surface and the boundary surface of rocks as various impulsive forces of horizontal and vertical directions were given to rocks which had difference in uniaxial compressive strength for investigate to the vibration velocity of rocks according to the impulsive direction and the monitoring site. The vibration velocity of the boundary surface of rocks was about 2.9 times or much larger than that of the surface at the same scaled distance in the case of horizontal impulsive forces, and was above 4.2 times in the case of vertical impulsive forces. The attenuation exponents of the vibration velocity equations in the surface and the boundary surface of rocks make a vast difference with the impulsive directions, but is makes little difference in the case of the same impulsive direction. The ratio of vibration constants of the surface to the boundary surface of rocks is that square and cube root scaled equation is a range of 2.7∼3.0 and 4.9∼5.0 respectively in the case of horizontal impulsive forces, and is a range of 4.2∼5.7 and 7.7∼11.5 respectively in the case of vertical impulsive forces.

  • PDF

표면유속을 이용한 평균유속 추정방법의 개발 (Estimatation of Mean Velocity from Surface Velocity)

  • 노영신;윤병만;류권규
    • 한국수자원학회논문집
    • /
    • 제38권11호
    • /
    • pp.917-925
    • /
    • 2005
  • LSIV은 표면유속을 측정하는 영상기반 유속측정법중의 하나이다. 이 방법은 기존 측정기법에 비해 측정이 용이할 뿐만 아니라 경제적이기 때문에 유량측정 등의 실제 하천의 유속 측정에 활용하려는 연구들이 시도되고 있다. 그러나 이 기법은 표면유속을 측정하기 때문에 유량 산정을 위해서는 측정된 표면유속을 평균유속으로 환산할 수 있는 방법이 필요하다. 본 연구에서는 하상 및 흐름조건에 대한 다양한 수리실험을 통해 개수로 난류 흐름에 대한 연직유속분포의 특성을 파악하였다. 수리실험결과 수표면 영역의 유속감소를 확인하였으며, 이러한 유속감소는 조도보다는 Froude 수의 영향이 더 큰 것으로 나타났다. 실험 결과를 이용하여 표면유속으로부터 평균유속을 추정하는 두 가지 방법을 제시하였다. 제안된 방법들은 표면유속 보정량을 이용하여 후류법칙의 유속분포를 보정하는 방법과 평균유속과 표면유속의 비를 이용한 방법이다. 제시된 방법들은 실제 하천의 유속 측정 자료들을 이용하여 검증하였다 검증결과 이 방법들은 $6\%$ 이내의 오차를 보이는 것으로 나타났다.

자연하천의 연직방향 유속분포 비교(수공) (Comparison of the Vertical Velocity Distribution in the Natural Streamflow)

  • 박승기;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.346-351
    • /
    • 2000
  • The study was carried out to investigate the characteristics of vertical velocity distribution measured by current meter at Kangkyung station in Keum river during the period of 1995 to 1997. It suggests the quadratic parabola equation to estimate the vertical velocity profile only from the measurement data of surface velocity. The equation was found to be statistically very stable and showed high significance to express the surface velocity and bottom velocity. The vertical velocity profile was determined by the relationships to the surface velocity, and a coefficient of the quadratic parabola equation. The vertical velocity profile can be applied to calculating the mean velocity and discharge, and to and to analyse the dispersion of pollutant materials in the streamflow.

  • PDF

최대유속과 표면유속에 관한 연구 (A Study on the Maximum Velocity and the Surface Velocity)

  • 추태호;제성진
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 춘계 종합학술대회 논문집
    • /
    • pp.351-355
    • /
    • 2006
  • 본 연구의 목적은 모든 하천에서 표면유속만을 이용하여 유량측정을 용이하게 할 수 있는 효과적이고 유용한 측정방법을 개발하는데 있다. 본 연구로 다음과 같은 중요한 결과를 얻었다. 1) 자연하천은 엔트로피 M값에 대응하여 평형상태를 유지하는 경향이 있으며, 2) 표면유속을 이용하여 산정된 계산치와 실측을 비교한 결과 상당히 좋은 일치를 보여주었으며, 3) 하천단면에서 최대유속이 발생하는 지점에서의 표면유속을 이용하여 유량을 산정하는 공식을 개발하였으며, 실측치와 비교한 결과 그 적용성을 확인하였다.

  • PDF

탄성파 자료를 이용한 BSR 부근의 속도 분석 (P-wave velocity analysis around BSR depth using surface and ocean bottom seismic data)

  • 김병엽;구남형;유동근
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.151-156
    • /
    • 2007
  • In December 2006, 2D surface streamer and Ocean Bottom Seismometer (OBS) data were acquired in the Ulleung basin in Korea where strong Bottom Simulating Reflectors (BSR) were shown as a result of 2D and 3D multichannel (MCS) reflection survey. The aim of this study is to provide another reliable source for estimating P wave velocity around BSR depth using OBS data in addition to velocity information from 2D surface seismic data. Four OBSs were deployed and four 20-km shot lines which pass two OBSs respectively were designed. To derive P wave velocity profile, interactive interval velocity analysis using ${\tau}$-p trajectory matching method (Kumar, 2005) was used for OBS data and semblance analysis was used for surface data. The seismic profiles cross the OBS instruments in two different directions yield recordings for four different azimuths. This raised the confidence for the results. All velocity profiles in the vicinity of BSR depth of four OBS sites show almost definite velocity changes which we could consider as upper BSR and free gas layer. Making comparison between velocity from OBS and that from 2D seismic semblance velocity analysis gives consistency in result.

  • PDF