• 제목/요약/키워드: Surface Temperature of Photovoltaic Module

검색결과 41건 처리시간 0.025초

실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구 (A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment)

  • 조성우
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성 (Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동 (Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module)

  • 김정훈;이준규;안영수;여정구;이진석;강기환;조철희
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.703-708
    • /
    • 2019
  • In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.

태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안 (Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.199-204
    • /
    • 2020
  • 국내에서 사용 중인 실리콘 태양전지판의 경우 제작 사양이 -0.5에서 0.05℃ 한계에서 최대출력을 낼 수 있도록 설계되어있어 온도 1℃ 상승 시 0.45~0.55%의 출력이 감소한다. 결과적으로 태양광발전은 태양전지(CELL)의 특성상 태양광모듈의 표면 온도상승에 따라 출력이 떨어지게 된다. 출력 저하는 태양광발전의 효율을 떨어뜨리며 효율이 떨어지면 최종적으로 태양광발전의 발전량에 따른 전력판매 수익이 감소하는 결과를 낳는다. 따라서 본 논문에서는 온도검출 센서를 통해 설정된 온도 이상으로 식별 시 태양광모듈 하부(또는 주변)에 냉각 공기를 분사시키는 방식을 연구방안으로 제안한다. 추가로 손실된 태양에너지를 활용하여 발전량을 증가시키며 냉각 공기를 통한 냉각기능을 적용함으로써 발전량을 더욱 증대시킬 수 있도록 하였다.

다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가 (Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period)

  • 정동은;염규환;이찬욱;도성록
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험 (Performance test of PVT-water system considering ambient air and circulating water temperature)

  • 정용대;남유진
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.

셀 표면의 충돌제트를 이용한 태양광발전 시스템 효율향상에 관한 연구 (Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells)

  • 유상필;진주석;김혁균;김이현;정성대;서용석;정남조
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.241-244
    • /
    • 2009
  • This study is focused on the improving effectiveness of a photovoltaic system. The characteristic of crystalline silicon solar cells, that 0.5% reduction in generating power is occurred by increasing temperature $1^{\circ}C$ of module. Typically, average solar generating power is higher spring and fall than summer. Degradation phenomena shall shorten the life of the module when the temperature of modules is $70^{\circ}C$. Decreasing temperature 40degree of the module and increasing the solar power 20% was presented using the water impinging jet method on the surface of photovoltaic cells. It is shown that Impinging jet have an effected on heat and deliver effective substance from the area in which the injection is effective.

  • PDF

표면냉각시스템을 이용한 PV 모듈의 출력 향상 (Improving the power of PV module by a surface cooling system)

  • 이종환;이재웅;김동준;김대현
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.309-313
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system. One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1V and 0.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

  • PDF

표면냉각을 통한 PV 모듈의 출력 향상에 관한 연구 (Improving the power of PV module by a surface cooling system)

  • 김대현;김동준
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.88-93
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1 V and O.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구 (A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film)

  • 안영섭;송종화;이성진;윤종호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF