• Title/Summary/Keyword: Surface Temperature

Search Result 14,512, Processing Time 0.05 seconds

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

Analysis of benthic macroinvertebrate fauna and habitat environment of Muljangori-oreum wetland in Jeju Island (제주도 물장오리오름 습지의 저서성 대형무척추동물상 및 서식 환경 분석)

  • Jung Soo Han;Chae Hui An;Jeong Cheol Lim;Kwang Jin Cho;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.363-373
    • /
    • 2022
  • On April 29, 2021 (1st), June 2 (2nd), and August 17 (3rd), we surveyed benthic macroinvertebrates fauna at Muljangori-oreum wetland in Bonggae-dong, Jeju Island, Korea. Muljangori-oreum wetland was divided into four areas. The survey was conducted in three accessible areas (areas 1-3). As a result of habitat environment analysis, the average monthly temperature from 2017 to 2021 was the highest in July and August and the lowest in December and February. This pattern was repeated. As a result of analyzing changes in vegetation and water surface area through satellite images, normalized difference vegetation index (NDVI) increased from February to July and decreased after July. Normalized difference water index (NDWI) was analyzed to show an inverse relationship. A total of 21 species from 13 families were identified in the qualitative survey and a total of 412 individuals of 24 species from 15 families were identified in the quantitative survey. A total of 26 species from 17 families, 8 orders, 3 classes, and 2 phyla of benthic macroinvertebrates were identified. The dominant species was Chronomidae spp. with 132 individuals (32.04%). Noterus japonicus was a subdominant species with 71 individuals (17.23%). As a result of comparative analysis of species identified in this study and the literature, it was confirmed that species diversity was high for Coleoptera and Odonata. Main functional feeding groups (FFGs) were found to be predators. Habitat orientation groups (HOGs) were found to be swimmers. In OHC (Odonata, Hemiptera, and Coleoptera) group, 17 species (73.91%) in 2021, 23 species (79.31%) in 2016, 26 species (86.67%) in 2018, and 19 species (79.17%) in 2019 were identified. Cybister japonicus, an endangered species II, was confirmed to inhabit Muljangori-oreum wetland in the literature. Ten individuals (2.43%) were also confirmed to inhabit Muljangori-oreum wetland in 2021. Therefore, continuous management and habitat protection are required to maintain the habitat environment of C. japonicus in Muljangori-oreum wetland.

Characteristics of Marine Algal Communities in Village Fishing Grounds Near Large Wildfires in Uljin-gun (울진군 대형산불 발생 인근 마을어장의 해조류 군집 특성)

  • Jeong Hee Shim;Hee Chan Choi;Hae-Kun Jung;Jong-Ku Gal;Jeong-Min Shim;Sung-Eic Hong;Chul-Hui Kwoun;Sang-Woo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.87-97
    • /
    • 2023
  • In this study, we examined the effects of a large wildfire in the coastal area of Uljin-gun. The analysis of water quality and the dominant species, species composition, and community structure of marine algal was conducted quarterly in 2022 at Nagok (F-1), Hujeong (F-2), Bongpyeong (F-3), and Gongse Port (F-C) in Uljin-gun. As a result of water quality analysis, the pH, a factor of wildfire impact was 8.07~8.30 and 8.12~8.48 in surface and bottom layers, respectively, which are normal values in coastal waters of the East Sea, suggesting no direct impact from wildfires. By marine algal species composition, the coastal areas show the following order: Rhodophyta (58.1%) > Ochrophyta (25.8%) > Chlorophyta (14.5%) > Magnoliophyta (1.6%). By season, Undaria pinnatifida was the most dominant at Nagok and Hujeong in March and June, which in September and November, Gelidium elegans and Lithophyllum sp. were the most dominant in Bongpyeong and Gongse Port, respectively. In the cluster analysis, the stations were divided into two groups according to presence and absence of specific marine algal by season. The dominant species were U. pinnatifida, G. elegans and D. divaricata in group A, and Lithophyllum sp. was mainly present in group B. Thus, the species composition and group structure reflected the normal seasonal change pattern with water temperature variation and showed little significant difference from the control site, suggesting no direct effects of the wildfire on algae distribution in Uljin.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.