• Title/Summary/Keyword: Surface Sediments

Search Result 731, Processing Time 0.022 seconds

Geochemical Characteristics of Surface Sediments and an Evaluation of Trace Metal Pollution in Gomso Bay, Korea, 2011 (2011년 곰소만 표층퇴적물의 지화학적 특성 및 중금속 오염도 평가)

  • Kim, Chung-sook;Kim, Hyung Chul;Lee, Won Chan;Hong, Sokjin;Hwang, Dong-Woon;Cho, Yoon-Sik;Kim, Jin ho;Kim, Sunyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.567-575
    • /
    • 2017
  • To understand the geochemical characteristics of Gomso Bay, which features extensive Manila clam, we measured various geochemical parameters, organic matter, and trace metals (Cu, Cd, Pb, Zn, Cr, Hg, As and Fe) of intertidal and subtidal surface sediments in 2011. The surface sediments consisted of sedimentary facies including gravel (0.21%), sand (61.1%), silt (32.1%), and clay (6.5%). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) values in most areas were below sediment quality criteria (COD, $20mg/g{\cdot}dry$; AVS, $0.2mg/g{\cdot}dry$). Trace metals in the surface sediments were below pollution thresholds, except for As (morderately polluted). Sediment quality was evaluated using the trace metal pollution load index (PLI) and ecological risk index (ERI), which showed that sediments were generally not polluted and at low risk; however, values along the outer bay were higher. We expect these results will be valuable for sustainable aquaculture prodution and environmental management in Gomso Bay.

Distribution and Contamination Status of Trace Metals in Surface Sediments of Shellfish Farming Areas in Yeoja and Gangjin Bays, Korea (남해안 패류양식해역(여자만과 강진만)의 퇴적물내 미량금속 분포특성 및 오염도 평가)

  • Choi, Minkyu;Lee, In-Seok;Kim, Hyung-Chul;Hwang, Dong-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.789-797
    • /
    • 2015
  • The concentrations of trace metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) were determined in 49 surface sediment samples collected in Yeoja and Gangjin Bays on the south coast of Korea, which contain many shellfish farms, in order to assess the contamination level and to understand the spatial distribution of trace metals. The average metal concentrations in the surface sediments of both bays decreased in the order Fe > Mn > Zn > Cr > Pb > Cu > As > Cd > Hg. There were no differences in metal concentrations between shellfish farms and reference sites. The metal concentrations were significantly higher in Gangjin Bay than in Yeoja Bay. Notably, the Cu, Cd, and Hg concentrations were nearly twice as high in Gangjin Bay as in Yeoja Bay. A multivariate analysis showed a strong correlation among Fe, Mn, Zn, Pb, and Cr in the sediments of both bays, implying that the metal concentrations in the sediments in the study area were mainly dependent on natural processes, such as crustal components and diagenesis. Based on the geoaccumulation index and marine sediment quality guidelines (SQGs), the surface sediments in Yeoja and Gangjin Bays are not polluted by trace metals.

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

Sedimentary Processes of Fine-grained Sediment around Intake of Pyongtaek Power Plant, West Coast of Korea (평택화력발전소 취수구 주변 해역에서 세립질퇴적물의 운반양상)

  • 류상옥;장진호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.247-256
    • /
    • 2002
  • Distribution of surface and suspended sediments was studied to understand sedimentary processes of finegrained sediment near the cooling water intake of Pyongtaek power plant on the west coast of Korea. The grainsize of surface sediment during the winter was coarser in the opened northern area than sheltered southern area. During the summer, finer sediment was found in the east (landward) than west due under dominantly the influence of tidal current. The concentration of suspended sediments was higher in the winter than summer and in the mid- to deep waters than surface waters. Asymmetry of tidal current induced net landward transport of suspended sediments. Landward transport of suspended sediments was most significant at the beginning of flood time when water level is low. Net suspended sediment fluxes ranged from 3.4$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ to 5.7$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ This large landward transport of suspended sediments is attributable to combination of enhanced flow induced by intake of cooling water and artificial structures near the water intake.

Distribution of TOC and metals in the surface sediments of the Lake Shihwa (시화호 표층 퇴적물의 유기탄소와 금속의 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Kim, Jong-Kun;Lee, Jeong-Moo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.159-164
    • /
    • 2008
  • In order to understand the spatio-temporal distribution of geochemical parametrs in surface sediments of the artificial Lake Shihwa in the vicinity of Kyunggi Hay in Korea, surface sediments were sampled at 14 sites in July 2007 and analyzed by CHN analyzer and ICP/MS. Metal concentrations in the sediments tended to be decreasing from the head to the mouth of the Lake Shihwa because of extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complex and cities. With the deposition of fine-grained sediments, high metal concentrations were also observed in the central part of lake. Although various programs(improvement of wastewater collection and treatment system, sea-lake water exchange etc) to improve the environmental conditions around the Lake Shihwa after dike construction were carried out, it was not dear to reach a good environmental quality. Therefore, further environmental programs should be conducted continuously for environmental improvement.

  • PDF

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.

준설퇴적토의 현장처분시설(Confined Disposal Facility) 설계

  • 홍준식;안재환;기소정;지재성;배우근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.355-358
    • /
    • 2002
  • A sediments are Integral called as gravel, sand, clay, mineral materials which are settling in bottom layer of reservoir, stream, and oceans from land. In practical problems relations of sediments are flood by decreed of flow capacity and down of water quality. Dredged sediments are composed with constructed material and variety of pollutant compounds. Therefore, it is very much of cost effects in nationally, if development for use of constructed material separated only constructed material within sediments. And it will be continue to the dredge operation of stream sediment for retrofit of water environment and sustainable's after the years. The following results could be obtained : In case of high concentration sediments, sample for design of CDF was shown property of flocculent settling. Assuming that average inflow rate is 1, 000㎥/hr, mean residence time( $T_{d}$), average ponding depth( $H_{pd}$ ), and design surface area for flocculent settling( $A_{df}$ ) were 5 hr, 0.6m, and 15, 750 $m^2$ respectivelyrespectivelyy

  • PDF

Modern Sedimentary Environments Within the Gogunsan Archipelago (고군산군도 내측해역의 현생퇴적환경)

  • Lee, Hee-Jun;Kim, Min-Ji;Kim, Tae-Kyung
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.519-536
    • /
    • 2008
  • The relatively tranquil area within the Gogunsan Archipelago was for the first time investigated preliminarily with respect to modern sedimentological processes in association with the emplacement of the Saemangeum Dyke. Basic sedimentological observations, bathymetry and surface sediments were performed twice during 2006-2008 to compare the results and elaborate changes during that period of time. In addition, sediment dynamical observations were carried out with latest measuring equipment along two transects crossing the entrances of the archipelago, including 12-hour onboard measurements of current, suspended sediments, temperature, and salinity. This dataset was used to reveal hydrodynamic characteristics for spring season April-May and to estimate the direction and relative magnitude of the net flux of suspended sediments. There occurred three depositional areas (A to C) within the archipelago, where sediment texture was also changed. In area A, around Yami Island and the dyke, and area B, in the center of the archipelago, surface sediments became coarsened over the two-year period; sand content increased 5% at the expense of silt content in the former, whereas silt content increased 3% at the expense of clay content in the latter. By comparison, area C in the western entrance of the archipelago shows a textural trend of fining with more silt and clay (combined increase of 5%) at the expense of sand content. The accumulation of sediments in areas A and B is attributable to the sand and silt resuspended from the seabed sediments off sector 4 of the dyke during the winter. The origin of the fine materials depositing on area C is uncertain at present, although suspended sediments moving offshore around the archipelago may be one of the most likely candidates for the source. The temperature of seawater increased rapidly from $9-10^{\circ}C$ in April to $14-16^{\circ}C$ in May, whereas salinity remained more or less constant at 31-32%o during the two months. Both of these parameters showed little variations with depth through a tidal cycle, suggesting good mixing of seawater without any help of significant waves. The consistency of salinity during a tidal cycle also indicates no insignificant effects of freshwater from the rivers Mangyung and Donjin emitting through the opening gap near Sinsi Island. The suspended sediment concentrations were higher at the entrance between Sunyu and Sinsi islands than at the entrance between Hoenggyong and Sinsi islands, ranging from 20 and 30 mg/l and from 5 and 15 mg/l, respectively at the sea surface. Although tidal currents were variable across a transect between Sunyu and Sinsi islands, the currents across the entrance between Hoenggyong and Sinsi islands flowed consistently in the same direction all over the transect during a tidal cycle. The estimation of net flux of suspended sediments indicates that suspended sediments are transferred to the Gogunsan Archipelago mainly through a relatively deep trough adjacent to Sinsi Island toward the shallow area around Yami Island and the dyke.