• Title/Summary/Keyword: Surface Robot

Search Result 423, Processing Time 0.025 seconds

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

Image-based Extraction of Histogram Index for Concrete Crack Analysis

  • Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.912-919
    • /
    • 2022
  • The study is an image-based assessment that uses image processing techniques to determine the condition of concrete with surface cracks. The preparations of the dataset include resizing and image filtering to ensure statistical homogeneity and noise reduction. The image dataset is then segmented, making it more suited for extracting important features and easier to evaluate. The image is transformed into grayscale which removes the hue and saturation but retains the luminance. To create a clean edge map, the edge detection process is utilized to extract the major edge features of the image. The Otsu method is used to minimize intraclass variation between black and white pixels. Additionally, the median filter was employed to reduce noise while keeping the borders of the image. Image processing techniques are used to enhance the significant features of the concrete image, especially the defects. In this study, the tonal zones of the histogram and its properties are used to analyze the condition of the concrete. By examining the histogram, the viewer will be able to determine the information on the image through the number of pixels associated and each tonal characteristic on a graph. The features of the five tonal zones of the histogram which implies the qualities of the concrete image may be evaluated based on the quality of the contrast, brightness, highlights, shadow spikes, or the condition of the shadow region that corresponds to the foreground.

  • PDF

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

RHT-Based Ellipse Detection for Estimating the Position of Parts on an Automobile Cowl Cross Bar Assembly (RHT 기법을 이용한 카울크로스바의 조립위치 결정에 관한 연구)

  • Shin, Ik-Sang;Kang, Dong-Hyeon;Hong, Young-Gi;Min, Young-Bong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.377-383
    • /
    • 2011
  • This study proposed the new method of discerning the assembled parts and presuming the position of central point in a Cowl Cross Bar (CCB) using a Charge-Couple Device (CCD) camera attached to a robot in the auto assembly line. Three control points of an ellipse were decided by three reference points, which were equally distanced. The radii of these reference points were determined by the size of the object, and the repeated presumption secured the precise determination. The comparison of the central point of ellipse presumed by Randomized Hough Transform (RHT) with the part information stored in a database was used for determining the faulty part in an assembly. The method proposed in this study was applied for the real-time inspection of elliptical parts, such as bolt, nut hole and so on, connected to a CCB using a CCD camera. The findings of this study showed that the precise decision on whether the parts are inferior or not can be made irrespective of the lighting condition of industrial site and the noises of the surface of the part. In addition, the defect decision on the individual elliptic parts assembled in a CCB showed more than 98% accuracy within a 500-millisecond period at most.

Development of Automatic Dehydration System for Umbrella Drying (우산 건조를 위한 자동 제수 시스템 개발)

  • Kim, Ji-Hyun;Park, Joo-Hyung;Song, Min-Gi;Yoon, Jun-Su;Yeon, Ju-Eun;Lee, Da-Eun;Park, Hyun-Ju;Kang, Tae-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • In this paper, an automatic dewatering system for drying water from umbrellas is proposed. In the past, there were problems that users had to put on plastic for removing the water from umbrella by covering it with a plastic or using a water dryer that removes water by manually touching the umbrella to the water surface. But this method was hard to expect. To solve these problems, an air compressor was used to develop a system to remove water from the umbrella by detecting the weight of the umbrella with pressure sensor when the user puts the umbrella into the dewatering machine and driving the motor. It is expected that this invention will have economic and environmental effects by eliminating the use of waste vinyl.

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.

A Study on The Straightness Improvement Method for Ensure Safety of Mobile Walker in Slope (경사로에서의 안정성 확보를 위한 Mobile Walker의 직진성 향상 기법에 관한 연구)

  • Lee, W.Y.;Lee, D.K.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • This paper suggests linearity enhancement algorithm to Ensure safety of Mobile Walker on Slope. Mobile Walker happens to get off track due to external forces from Walker's weight and the degree of the slope while slope driving. In order to compensate this, this research used the controller that estimates the external forces according to the slope of road surface and adjusts it to the motor output. Also, through comparisons between targeted rotational angular velocity which the user inputs and its velocity of the robot, algorithm was applied which applies a weight to each shaft. As a result of applying the proposed correction controller, it diverges in case of non-compensation experiments that deviates when moving, but it case of applying the ramp calibration algorithm, the deviation distance at max was within 10cm that it keeps safe driving, and change rate of deviation distance was also stabilized after 1m where no more changes occurred.

  • PDF