• Title/Summary/Keyword: Surface Relief Hologram

Search Result 3, Processing Time 0.017 seconds

Surface Relief Hologram Mask Recording Simulation and Optimization Based on SDTA in the Fresnel Diffraction Zone (Fresnel 영역에서의 SDTA 방법을 이용한 전산묘사에 의한 Surface Relief Hologram Mask 기록 조건 최적화)

  • Lee, Sung-Jin;Dominguez-Caballero, Jose;Barbastathis, George
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.793-798
    • /
    • 2009
  • In this paper, the simulation and optimization of SRH (Surface Relief Hologram) masks for printing LCD gate patterns using TIR (Total Internal Reflection) holographic lithography was investigated. A simulation and optimization algorithm based on SDTA (Scalar Diffraction Theory Analysis) method was developed. The accuracy of the algorithm was compared to that of the RCWA (Rigorous Coupled Wave Analysis) method for estimating the Fresnel diffraction pattern of Cr amplitude masks for the given system geometry. In addition, the results from the optimization algorithm were validated experimentally. It was found that one to the most important conditions for the fabrication of SRH masks is to avoid nonlinear shape distortions of the resulting grating. These distortions can be avoided by designing SRH masks with recorded gratings having small aspect ratios of width versus depth. The optimum gap size between the Cr and SRH masks was found using the optimization algorithm. A printed LCD gate pattern with a minimum line width of $1.5{\mu}m$ exposed using the optimized SRH mask was experimentally demonstrated.

TIR Holographic lithography using Surface Relief Hologram Mask (표면 부조 홀로그램 마스크를 이용한 내부전반사 홀로그래픽 노광기술)

  • Park, Woo-Jae;Lee, Joon-Sub;Song, Seok-Ho;Lee, Sung-Jin;Kim, Tae-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • Holographic lithography is one of the potential technologies for next generation lithography which can print large areas (6") as well as very fine patterns ($0.35{\mu}m$). Usually, photolithography has been developed with two target purposes. One was for LCD applications which require large areas (over 6") and micro pattern (over $1.5{\mu}m$) exposure. The other was for semiconductor applications which require small areas (1.5") and nano pattern (under $0.2{\mu}m$) exposure. However, holographic lithography can print fine patterns from $0.35{\mu}m$ to $1.5{\mu}m$ keeping the exposure area inside 6". This is one of the great advantages in order to realize high speed fine pattern photolithography. How? It is because holographic lithography is taking holographic optics instead of projection optics. A hologram mask is the key component of holographic optics, which can perform the same function as projection optics. In this paper, Surface-Relief TIR Hologram Mask technology is introduced, and enables more robust hologram masks than those previously reported that were formed in photopolymer recording materials. We describe the important parameters in the fabrication process and their optimization, and we evaluate the patterns printed from the surface-relief TIR hologram masks.

2-dimensional hologram formation by selective etching on amorphous As-Ge-Se-S thin film (비정질 As-Ge-Se-S 박막에서 선택적 에칭을 통한 2차원 홀로그램 제작)

  • Kim, Jin-Hong;Kang, Jin-Won;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1430-1431
    • /
    • 2006
  • We investigated the formation of 2-dimension hologram grating by means of selective etching characteristic and photo-expansion effect according to photo irradiation on amorphous As-Ge-Se-S thin film. By method of phase holography, we made the 2-dimensional hologram grating by each (S:P) and ($+45^{\circ}:-45^{\circ}$) polarized beam with DPSS laser(532nm) and He-Ne laser(632nm). A recording property was observed at each polarized beam through 2-dimensional hologram surface relief grating. Chalcogenide thin film was etched selectively by NaOH solution after the formation of 1-dimensional diffraction grating. And then etched sample was rotated 90 degree to fabricate 2 dimensional hologram grating. We found that it was observed the formation of 2-dimensional hologram grating by AFM(Atomic Force Microscopy).

  • PDF