• Title/Summary/Keyword: Surface Profiling

Search Result 134, Processing Time 0.043 seconds

The Interfacial Nature of TiO2 and ZnO Nanoparticles Modified by Gold Nanoparticles

  • Do, Ye-Ji;Choi, Jae-Soo;Kim, Seoq-K.;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2170-2174
    • /
    • 2010
  • The surfaces of $TiO_2$ and ZnO nanoparticles have been modified by gold (Au) nanoparticles by a reduction method in solution. Their interfacial electronic structures and optical absorptions have been studied by depth-profiling X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy, respectively. Upon Au-modification, UV-vis absorption spectra reveal a broad surface plasmon peak at around 500 nm. For the as-prepared Au-modified $TiO_2$ and ZnO, the Au $4f_{7/2}$ XPS peaks exhibit at 83.7 and 83.9 eV, respectively. These are due to a charge transfer effect from the metal oxide support to the Au. For $TiO_2$, the larger binding energy shift from that (84.0 eV) of bulk Au could indicate that Au-modification site of $TiO_2$ is different from that of ZnO. On the basis of the XPS data with sputtering depth, we conclude that cationic (1+ and 3+) Au species, plausibly $Au(OH)_x$ (x = 1-3), commonly form mainly at the Au-$TiO_2$ and Au-ZnO interfaces. With $Ar^+$ ion sputtering, the oxidation state of Ti dramatically changes from 4+ to 3+ and 2+ while that (2+) of Zn shows no discernible change based on the binding energy position and the full-width at half maximum (FWHM).

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

A Study of Kirkendall Void Formation and Impact Reliability at the Electroplated Cu/Sn-3.5Ag Solder Joint (전해도금 Cu와 Sn-3.5Ag 솔더 접합부의 Kirkendall void 형성과 충격 신뢰성에 관한 연구)

  • Kim, Jong-Yeon;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • A noticeable amount of Kirkendall voids formed at the Sn-3.5Ag solder joint with electroplated Cu, and that became even more significant when an additive was added to Cu electroplating bath. With SPS, a large amount of voids formed at the $Cu/Cu_3Sn$ interface of the solder joint during thermal aging at $150^{\circ}C$. The in-situ AES analysis of fractured joints revealed S segregation on the void surface. Only Cu, Sn, and S peaks were detected at the fractured $Cu/Cu_3Sn$ interfaces, and the S peak decreased rapidly with AES depth profiling. The segregation of S at the $Cu/Cu_3Sn$ interface lowered interface energy and thereby reduced the free energy barrier for the Kirkendall void nucleation. The drop impact test revealed that the electrodeposited Cu film with SPS degraded drastically with aging time. Fracture occurred at the $Cu/Cu_3Sn$ interface where a lot of voids existed. Therefore, voids occupied at the $Cu/Cu_3Sn$ interface are shown to seriously degrade drop reliability of solder joints.

  • PDF

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

Electrical Resistivity Survey in the Eon-Yang Fault Area, Southeastern Korean Peninsula (경상분지(慶尙盆地) 언양단층(彦陽斷層) 지역(地域)에 대(對)한 전기비저항(電氣比抵抗) 탐사연구(探査硏究))

  • Kim, In-Soo;Kim, Jong-Yeol
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 1983
  • Gyeongsang Basin in the southeastern part of the Korean peninsular is characterized by many fault systems. To decipher the geotectonical evolution of the Korean peninsular and marginal basins in her adjacent areas it is prerequisite to understand the spatial distribution pattern and mutual relationships of these fault systems. Because of difficulties in finding any criterion to recognize the faults in field, their extension and mutual relationships in ages are not very clear yet. As an attempt to find geophysical criteria to recognize the fault, geoelectrical resistivity survey was carried out in this study. With the Wenner configuration four resistivity soundings and twenty seven resistivity profilings were done. The electrode distance used was up to 50m. From the results of the resistivity soundings and boring data of earlier groundwater investigations the depth of alluvial and weathered zone was established to be at most 20m in the study area. In the resistivity profiling low resistivity anomaly zones are detected on every traverse, which are interpreted as caused by fractures, fault clays and mylonites in the fault zone. The width of the fault zone amounts to 0.3-1km. By correlating and connecting the negative anomaly zones from traverse to traverse one can determine the trend of th of the faultzone and therefore that of fault itself. The recognized fault trend in this way was $N15^{\circ}-20^{\circ}E$ and this coincides with the direction of the inferred fault line from earlier geological surface mapping. With the help of this characteristical negative anomaly the existance of another $N80^{\circ}W$ trending fault was estabished. This study has shown that geoelectrical resistivity survey can be applied successfully to the problem of tracing fault line insofar as a fault zone has been developed along fault line.

  • PDF

Effects of Auklandia Lappa on Dextran Sulfate Sodium-Induced Murine Colitis (당목향(唐木香)이 DSS(Dextran sulfate sodium)로 유발된 염증성 장질환 동물모델에 미치는 영향)

  • Kim, So-Yeon;Park, Jae-Woo;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.134-146
    • /
    • 2013
  • Objectives : Auklandia Lappa (ALE) is one of the herbs used frequently to treat abdominal pain and diarrhea and reported anti-inflammatory activity by suppressing proinflammatory cytokines. This study was designed to investigate whether ALE could show protective activities on experimental colitis induced by dextran sulfate sodium (DSS) models. Methods : Colitis was induced by DSS in Balb/c mice. ALE 10, 30, 100 and 300 mg/kg were orally administered twice a day for 7 days in DSS model. Mice weight was measured daily. Scoring of clinical findings was measured every other day. Colon length, edema, fecal blood and histological damages were assessed at day 7 in DSS model. In histological analysis, we checked cryptal glands, surface epithelium, submucosa, transmural, stroma and scored degree of inflammatory cell damage by modified histological scoring. We also calculated cytokines concentrations including IFN-${\gamma}$, TNF-${\alpha}$, IL-6, IL-$1{\beta}$, IL-17, IL-23, IL-10 and TGF-${\beta}1$ by Biometric Multiplex Cytokine Profiling method. Results : ALE showed the protective effects on DSS-induced experimental colitis. ALE inhibited shortening of colon length and histological damages of colon does-dependently, but it did not inhibit weight loss. ALE also inhibited IFN-${\gamma}$ and IL-6 expression, and upregulated cytokines (IL-10, TGF-${\beta}1$) related to regulatory T cell differentiation and proliferation. Conclusions : The current results demonstrate the clinical utility of ALE in traditional medicine and indicate the possibility of potent drug development of inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

CsX+ SNMS의 Matrix Effect 감소연구

  • 문환구;김동원;한철현;김영남;심태언
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1992.02a
    • /
    • pp.17-18
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth p profiling because of high detection sensitivity and excellent depth r resolution, however, it requires standard sample to do quantitative analysis d due to matrix effect depending on the species of impurities and sample m matricies and on the sputtering rates. A Among the SNMS technology developed to supply the deficiency, we researched i into CsX+ SNMS which improved the resul t quanti tati vely wi thout any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate a analysis using Si02 layer etc. and adaptability to trace element c concentration analysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented s strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. d dynamic range were investigated. A After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Research of Matrix Effect Reduction of $CsX^+$ SNMS ($CsX^+$ SNMS의 Matrix Effect 감소연구)

  • 문환구;김동원;한철현;김영남;심태언
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth profiling because of high detection sensitivity and excellent depth resolution, however, it requires a standard sample to do quantitative analysis due to matrix effect depending on the species of impurities and sample matricies and on the sputtering rates. Among the SNMS technology developed to supply the deficiency, we researched into CsX+ SNMS which improved the result quantitatively without any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate analysis using Siq layer etc., and adaptability to trace element concentration alaysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. Also detection limit and dynamic range were investigated. After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Determination of Acquisition Parameters for High-Resolution Marine Reflection Surveys through a Computer Model Study (전산모형을 통한 고해상도 다중채널 해양반사파의 획득변수 결정)

  • 김기영;주형태;홍종국;유해수
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.187-206
    • /
    • 1994
  • Through a computer model study, optimum system configuration and field parameters were determined for high-resolution marine reflection surveys. Characteristics of far-field signatures were analysed in both time and frequency domains for the six individual R/V Onnuri. The analysis shows that the cluster fired at the depth of 2m below the sea surface generates the most ideal far-field signatures among the above seismic sources. Compared with the 96-channel streamer on the R/V Onnuri, the 12-channel streamer is suitable for shallow reflection profiling due to its high resolution both in the vertical and horizontal directions despite its lower signal-to-noise ratio. Considering factors including target depth, frequency range, airgun volume, number of recording channels, and capacity of compressors, optimum values for record length, sample period, and shot interval are believed to be is, 1ms, and 3.125m or 6.25m, respectively.

  • PDF

Pressure Sensing Properties of AlN Thin Films Sputtered at Room Temperature

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Lee, Youn-Jin;Hong, Yeon-Woo;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.94-98
    • /
    • 2014
  • Aluminum nitride (AlN) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 25~75% $N_2$ /Ar. The characterization of film properties were performed using surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy(XPS), and pressure-voltage measurement system. The deposition rates of AlN films were decreased with increasing the $N_2$ concentration owing to lower mass of nitrogen ions than Ar. The as-deposited AlN films showed crystalline phase, and with increasing the $N_2$ concentration, the peak of AlN(100) plane and the crystallinity became weak. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. But in the case of 50% $N_2$ /Ar condition, the peak of (002) plane, which is determinant in pressure sensing properties, appeared. XPS depth profiling of AlN/TiN/SUS430 revealed Al/N ratio was close to stoichiometric value (45:47) when deposited under 50% $N_2/Ar$ atmosphere at room temperature. The output signal voltage of AlN sensor showed a linear behavior between 26~85 mV, and the pressure-sensing sensitivity was calculated as 7 mV/MPa.